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Highlights
Single cell methods have proliferated in
recent years, made feasible by droplet
microfluidic technologies, including com-
mercialized technologies.

Although the concept of single cell
barcoding using these methodologies is
straightforward, these assays require sev-
eral assumptions about the underlying
molecular biology for data interpretation.

Following the initial droplet-based single
Single cell sequencing technologies have become a fixture in the molecular pro-
filing of cells due to their ease, flexibility, and commercial availability. In particular,
partitioning individual cells inside oil droplets via microfluidic reactions enables
transcriptomic or multi-omic measurements for thousands of cells in parallel.
Complementing the multitude of biological discoveries from genomics analyses,
the past decade has brought new capabilities from assay baselines to enable a
deeper understanding of the complex data from single cell multi-omics. Here,
we highlight four innovations that have improved the reliability and understanding
of droplet microfluidic assays. We emphasize new developments that further ori-
ent principles of technology development and guidelines for the design,
benchmarking, and implementation of new droplet-based methodologies.
cell demonstrations, new experimental
and bioinformatics methods have
evolved the baseline expectations of
these assays, producing more complex
and higher quality data, including single
cell multi-omics.

By generalizing themes from prior bioin-
formatics and experimental innovation,
new users and experienced technology
developers can identify opportunities to
maximize data generation, improve ana-
lytical interpretation, and avoid failure
modes in establishing new assays.
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Lessons learned from droplet-based single cell genomics
Following the first demonstration of single cell sequencing in 2009 [1], single cell genomics assays
have become widely used staples in the molecular biology toolkit, ushering in a new appreciation
for molecular heterogeneity underlying cells in complex tissues [2]. A variety of approaches enable
the partitioning and barcoding of individual cells, including microwells [3], split-pool combinatorial
indexing [4], and droplet emulsions [5]. Although each of these methods in contemporary workflows
can yieldmassive-scale, high-quality data, themost widely used single cell methods leveragedroplet
microfluidics (see Glossary) [6], whereby microfluidic instrumentation is used to create oil emulsions
for the barcoding of cellular nucleic acids over thousands of reactions in parallel. Thus, we focus the
scope of this review on concepts and developments in droplet-based technologies. In addition to
~100× greater throughput compared with prior plate-based methods, droplet-based single cell ge-
nomics provided a technical platform for multi-omics, including transcriptome [7–9], accessible chro-
matin [10,11], protein abundance [12,13], perturbation [14,15], and many combinations thereof
[16,17]. For example, cellular indexing of transcriptomes and epitopes by sequencing
(CITE-seq) quantifies surface protein expression and gene expression [12,17,18] via the covalent at-
tachment of antibodies to oligonucleotides. Furthermore, DOGMA-seq [16], TEA-seq [19], and
NEAT-seq [20] span all measurements of the central dogma (DNA, RNA, and protein).

The first methods to describe droplet-based single cell RNA sequencing (scRNA-seq), inDrop [8]
andDrop-seq [9], established this key technological capacity, which has transformed single cell ge-
nomics. Both methods introduced massively parallel barcoding of single cells using oil emulsion
droplets containing oligonucleotides comprising cell barcodes (14–16 bases) and uniquemolec-
ular identifiers (UMIs) (8–12 bases), lengths that were selected to ensure molecular diversity
without creating an onerous sequencing burden. Although the overall concept and design were
similar, these assays differed in details that shaped the adoption and extensions of these single
cell assays. For example, Drop-seq used hard resin beads that were limited by Poisson loading
into droplets, whereas inDrop utilized soft hydrogel beads to achieve sub-Poisson loading, con-
centrating the distribution of beads per droplet closer to one per droplet, to enable higher
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Box 1. Summary of assumptions and recent innovations in droplet-based single cell genomics

In an ideal droplet-based single cell technology, every cell would be individually partitioned into a droplet containing re-
agents needed to de-identify its nucleic acid content. Each cell would be associated with exactly one barcode, and nucleic
acids from any other cell would not be present in the droplet emulsion. We articulate this idealistic framework because
most downstream analyses rely on these assumptions and violations may confound the interpretation of existing and
new single cell technologies. Fortunately, an appreciation for these technical details has catalyzed new methodologies.

First, experimental frameworks used to verify and enhance single cell measurements are outlined (see Figure 1 in the main
text). The species-mixing experiment is the most common design, which provides a high-sensitivity measure for instances
where two or more cells are contained within an individual droplet. In most experimental settings designed to profile new
biology, only one species is prevalent in the experiment, requiring exogenous reagents or computational methodologies to
identify and remove cell doublets. Further emerging approaches that purposefully overload cells into droplets and rationally
deconvolve cell doublets can increase cell throughput by an order of magnitude in these workflows.

Second, we extend this concept of validating single cell measurements to detecting nucleotides that did not originate from
the cell contained in the droplet (see Figure 2 in the main text). The degree of the ambient signal can be assessed from anal-
yses of the knee plot and computationally mitigated. Furthermore, explicitly modeling the abundance of ambient molecules
from empty droplets can create a high-quality transformation of raw count data usingmore sophisticated statistical methods.

Third, the other key ingredient within the droplet chemistry is analyzed: the bead conjugated with oligonucleotides. Both
possibilities of multiple barcodes associating with the same cell through two or more beads encapsulated in the droplet
or sequence heterogeneity on an individual bead, collectively termed ‘barcode multiplets’ (see Figure 3 in the main text).
Barcode multiplets can be leveraged not only for new assays, such as bead overloading in microfluidic reactions, but also
for benchmarking the robustness and reliability of single cell measurements in new assays.

Finally, we illustrate considerations for new single cell multi-omic assays (see Figure 4 in the main text). Specifically, to en-
sure proper interpretation of new analytes, there is an imperative to measure as close to the source as possible, a guiding
principle underlying multi-omic method development. As motivating examples, we discuss the variable efficacy of strate-
gies for measuring genetic perturbations and quantifying proteogenomic features alongside single cell genomicsmeasure-
ments from the cells.

Through these four vignettes, this review summarizes how idealistic assumptions can be relaxed, and how newermethods
have enhanced these assays through a synthesis of computational and experimental methods development.
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Glossary
Ambient molecules: cell-free nucleic
acids (typically RNA) in the solution
where cells are suspended. These
nucleotides can become encapsulated
in droplets with cells and barcoded
alongside nucleic acids from those cells.
The abundance of ambient molecules
can vary widely between tissue sources
and dissociation protocols [39].
Antibody-derived tags (ADTs):
oligonucleotides covalently attached to
antibodies for proteogenomic
characterization, including surface
marker expression via CITE-seq [12] or
cell hashing by targeting B2M [24].
Apt-seq: assay that allows for the
simultaneous profiling of transcriptomes
of cells and surface proteins using
aptamers, which are nucleic acid probes
that can bind to specific target epitopes
[63]. Critically, the same molecule
(nucleic acid) that does the binding is
what is barcoding during the droplet-
reverse transcription (RT) step.
ATAC with selected antigen
profiling by sequence (ASAP-seq):
single cell multi-omic assay that profiles
surface or intracellular protein
abundance alongside accessible
chromatin and mitochondrial DNA via a
droplet-based ATAC-seq reaction [16].
A critical innovation in developing this
workflow was a bridge oligo, which
allowed for repurposing existing CITE-
seq reagents for compatibility with a
different capture sequence for the bead
oligos on the ATAC gel beads.
Barcode multiplets: instances where
a cell is barcoded by two or more
oligonucleotides due to multiple
barcodes on a single gel bead or from
multiple beads in the same droplet.
Bead-based ATAC processing
(bap): computational approach for
identification of barcode multiplets using
the base-pair resolution abundance of
Tn5 insertion sites shared between pairs
of single cell barcodes [10,49].
Bridge oligo: oligonucleotide used to
facilitate the barcoding of a feature in a
droplet-based single cell reaction. Used
in the ASAP-seq workflow [16], the
bridge oligos allow the capture
sequence in the ATAC beads to
barcode reagents developed for CITE-
seq.
Cell Hashing: approach for increasing
the cell throughput of a single cell run
while controlling for the doublet rate [24].
Antibodies recognizing conserved
proteins, such as B2M, are conjugated
throughput of cell profiling. Notably, using soft hydrogel beads has similarly been commercialized
and utilized by 10x Genomics [7], the most widely adopted commercial kits for single cell sequenc-
ing. The choice of beads is one of many concepts that has emerged and evolved over recent years
of single cell genomics, including strategies for detecting multiple cells or beads in droplets.

Motivated by the evolving understanding of the nuances of droplet-based single cell sequencing, here
we review four experimental and computational innovations that have improved the accuracy or ex-
panded the scope of single cell genomics technologies. In particular, we reflect on vignettes where
iterative method development has improved the state-of-the-art assays (summarized in Box 1 and
part (A) of all figures in this article). We review how newmethods have expanded beyond assay base-
lines, which have catalyzed new computational and experimental method development. These inno-
vations have produced single cell assays with vastly improved signal-to-noise ratios, accurate cell
yields, and complex multi-omic measurements. Furthermore, although we focus on cell-based mea-
surements, we note that many analogous advances have been similarly described for profiling nuclei.
In the years ahead, we envision continued innovation to stem from a similar appreciation of the tech-
nical principles underlying the evolution of droplet-based single cell technologies.

Validating and expanding single cell measurements
Baseline: at most, one cell must be loaded into a droplet for accurate single cell profiling.

New developments: computational and experimental strategies can identify droplets with more
than one cell and remove doublets, increasing cell throughput per experiment.
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with a diverse set of oligonucleotide
barcodes and can be used for sample
multiplexing in addition to increasing the
number of cells profiled per experiment.
Cellular indexing of transcriptomes
and epitopes by sequencing (CITE-
seq): high-throughput, single cell multi-
omic technology for quantifying mRNAs
and surface proteins via oligo-
conjugated antibodies [12]. Successful
applications of CITE-seq measure
transcriptome-wide gene expression
alongside up to 220 or more surface
proteins [18].
Close-packed ordering: method
used to surpass the Poisson distribution
of loading beads into droplets, primarily
for increasing the abundance of droplets
with exactly one bead to 90% or more
[7,83]. This is applicable for deformable
hydrogel beads (used originally in InDrop
[8], among other assays) but not hard
resin beads (used in Drop-seq [9]).
CRISPR droplet-sequencing
(CROP-seq): introduced a new vector
design that allowed for the direct
detection of the gRNA protospacer [15],
rectifying a limitation of the original
Perturb-seq workflow [14].
Denoised and scaled by
background (dsb): method that
transforms integer count data from
proteogenomic assays, such as CITE-
seq, and produces a more sensitive
measure by using the occurrence of
ambient molecules barcoded by
droplets that are not annotated by cells
[48].
DOGMA-seq: assay that profiles all
elements of the central dogma, including
accessible DNA, RNA abundance, and
protein abundance, via droplet-based
single cell multiomics [16].
Droplet microfluidics: key technology
in single cell genomics profiling; a
microfluidics device can be engineered
to create oil–water emulsions in which
individual cells are partitioned for
barcoding nucleic acids for single cell
genomics.
Droplet overloading: attempts to
profile cells beyond the manufacturer’s
recommendations, often leading to two
or more cells per droplet. This workflow
is accompanied by exogenous
barcoding or combinatorial indexing of
nucleic acids upstream of loading the
microfluidic reaction.
Droplet-based combinatorial
indexing: or combinatorial pre-
indexing; inclusion of a diverse barcode
upstream of the microfluidic instrument,
allowing for the overloading of cells into
Species mixing experiments
When establishing a new assay, an essential validation is that the intended analyte is accurately
measured. Intrinsic to their name, single cell technologies profile the molecular contents of in-
dividual cells, which requires an experimental system to readily distinguish whether one, two, or
more cells are profiled within the individual droplet reaction (Figure 1A). As throughput in-
creases, more cells are processed in parallel, loading a higher density of cells into the system
(e.g., in droplet-based platforms, such as the 10x Genomics Chromium). Consequently, higher
cell densities increase the probability that two or more cells will be encapsulated in a single
droplet.

In this sense, species mixing experiments, often using a combination of human and mouse cell
lines, are a gold-standard technique for benchmarking and quantifying cell doublets [21], that is,
artifacts where two ormore cells aremistakenly encapsulated together (Figure 1B). Since the cells
from different species have distinct genetic sequences, any doublet-containing cells from both
species (a heterotypic doublet) can be identified by their mixed-species expression profile
(Figure 1A). Originally introduced in Drop-seq for droplet-based single cell sequencing [9], the au-
thors reported that 0.4–11% of cell barcodes were cell doublets through analyses in a ‘barnyard
plot’ (Figure 1C), and the rate varied as a function of cell loading under standard statistical as-
sumptions. While human–mouse doublets are readily identified analytically, homotypic dou-
blets cannot be discriminated, requiring a post hoc correction from the heterotypic doublet
rate to report the true frequency of doublets [9]. Mixing human andmouse cell lines at 50:50 ratios
to quantify the doublet rate results in 50% heterotypic and 50% homotypic doublets and has
been used for benchmarking most droplet-based assays, including single cell assay for
transposase accessible chromatin by sequencing (scATAC-seq), where genomic DNA from
human and mouse cells can similarly be used to detect doublets [10,11].

Increasing throughput while controlling doublet rate
Although species-mixing experiments are conducted when initially validating and benchmarking
new assays, the design is rarely compatible with experiments aiming to study the molecular het-
erogeneity of complex tissues typically derived from a single organism. Furthermore, because
cells are Poisson loaded into droplets, meaning the number of cells per droplet follows a Poisson
distribution, ~80–90%+ of droplets lack cells following the standard guidelines for single cell se-
quencing [22]. Given that many studies have demonstrated the utility of uncovering cellular het-
erogeneity by profiling more cells, new approaches have been developed to increase the
number of cells per experiment (i.e., cell throughput). Thus, droplet overloading is a common
feature whereby many more cells are loaded into the droplet microfluidic device than recom-
mended, increasing the number of cells barcoded while controlling the doublet rate, which limits
the erroneous interpretation of faulty single cell states. A common method for cell doublet detec-
tion utilizes exogenous diverse barcodes that are co-detected alongside cellular features in single
cell assays [23]. Common formats involve either an oligo-conjugated antibody via Cell Hashing
[24] or an oligo-lipid conjugate inMULTI-seq [25] (Figure 1D). Following single cell encapsulation,
amplification, and sequencing, antibody-derived tags (ADTs) can be enumerated per cell, re-
sulting in a barcode-by-cell matrix, and subsequent analyses allow for each cell to be assigned to
an original sample. Conceptually, thesemethods can control the rate of doublets when increasing
the cell throughput by identifying droplets with two or more distinct hash barcodes (Figure 1E,F).
The droplets identified as doublets are filtered from the analysis, resulting in a reduced doublet
rate at the expense of discarded data. Under previously described workflows and conditions
[24], the combined experimental and computational framework of doublet removal can increase
the throughput of bona fide singlets by nearly an order of magnitude for an equivalent doublet rate
(Figure 1E).
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droplets because individual cells can be
de-identified from a combination of the
bead barcode and the pre-index
barcode. Successful applications of this
approach have been demonstrated for
accessible chromatin [10], RNA [36],
and proteins [37].
Empty droplets: droplets that do not
receive a cell during the single cell assay.
All nucleic acids barcoded in these
droplets are ambient, which can be used
for statistical modeling to subtract the
ambient RNA signal from cells, including
RNA molecules (as in CellBender and
SoupX [45,46]) as well as multiomic
settings including protein signals [48]
and DNA [44].
Genetic demultiplexing: approach to
increase cell yields in single cell
workflows by leveraging genetic
differences between individuals; cells
barcoded by bead oligos can be
assigned as a heterotypic doublet by
specifying individual donor genotypes
[31] or without prior knowledge [32,34].
Heterotypic doublet: instances where
two sufficiently distinct cells can be
readily distinguished by a doublet
detection algorithm (e.g., different
species, a unique donor, or different cell
types).
Homotypic doublet: instances where
two cells of the same cannot be readily
distinguished by any doublet detection
algorithms (e.g., same species, donor,
or cell type).
MULTI-seq: scRNA-seq and snRNA-
seq sample multiplexing using lipid-
tagged indices [25] has the advantage of
utilizing lipid-based incorporation into
cells or nuclei for multiplexing, whereas
other multiplexing approaches, such as
Cell Hashing [24], require protein-based
detection via a barcoded antibody.
Perturb-seq: emerging single cell
multi-omics assay that couples gRNA
detection with single cell
transcriptomics. In the original design of
Perturb-seq [14], a separate barcode
was linked to the gRNA protospacer,
but was shown to be prone to
mismatches during lentiviral packaging.
The vector used in CROP-seq [15]
enables direct barcoding of the
protospacer, eliminating the need for the
proxy barcode and improving data
quality.
Phage-ATAC (PAC)-tag: tag
containing the Illumina Read 1 sequence
(Rd1) required for adding the single cell
bead oligo barcode to the nanobody
CDR3 sequence in the droplet
amplification reaction [62].
Computational detection of cell doublets
In addition to the physical techniques for identifying cell doublets, methods such as DoubletFinder
[26] and scrublet [27] have been developed to identify cell doublets under specific data assump-
tions. Each requires a supervised set of parameters, including the expected doublet rate, typically
estimated from prior species mixture experiments underlying the technology. These tools then
generate synthetic doublets by randomly merging gene expression profiles from pairs of cells,
creating a set of true-positive doublets (Figure 1G). The real and synthetic data are jointly analyzed
in a neighbor graph, typically computed in a reduced dimensionality space. Based on the fraction
of synthetic doublets that are the nearest neighbors, each cell is assigned a score proportional to
the likelihood of being a heterotypic doublet (Figure 1H). Related methods have similarly been de-
veloped for scATAC-seq analyses, including ArchR [28] and Amulet [29]. Ultimately, the inference
of doublets can be useful in some settings. An important limitation of computational doublet de-
tection is that these approaches cannot identify homotypic doublets (Figure 1A) or cells of closely
related cell types. Although these homotypic doublets remain in downstream analyses, straight-
forward statistical extensions allow for estimating the number of remaining doublets [27].

Donor-mixing experiments
Another increasingly common approach for increased throughput without modifying the single
cell reaction is using distinct donors and genetic demultiplexing [30] to identify and filter cell
doublets (Figure 1I and Box 2). Although demuxlet [31] achieves doublet identification and
donor assignment with remarkably high accuracy, this tool requires donor genotypes to be es-
tablished prospectively. Other approaches, including SouporCell [32], freemuxlet (available as a
preprint [33]), and scSplit [34], can identify distinct clusters of genetic variants from single cell-se-
quencing data directly, mitigating the requirement for genotypes to be known and broadening the
use of donor demultiplexing and doublet detection. These donor-mixing studies have become in-
creasingly popular in single cell expression quantitative trait loci studies to resolve the impact of
genetic variation on gene expression within a subset of cells [35].

Inline barcoding
The doublet-detection methods discussed thus far identify droplets with evidence of hetero-
typic doublets, discarding those data and limiting efficiency at higher levels of droplet
overloading. This deficiency motivated the development of new methods that utilize inline
barcoding, termed droplet-based combinatorial indexing, where a cell barcode is defined
by the concatenation of diverse sequences from a split-pool step in addition to the droplet-
derived oligos (Figure 1J).

The combination of a split-pool and droplet barcode allows for the unambiguous assignment of
nucleic acids to single cells, even when multiple cells are encapsulated within the same droplet.
Thus, instead of discarding droplets identified with two or more cells, the nucleic acids in these
droplets are deconvolved into their constituent cells (up to some lower doublet rate). These
workflows have been demonstrated independently for each of scATAC-seq (accessible chroma-
tin) [10], scRNA-seq (transcriptome) [36], and oligo-based antibody detection (proteo-genomics)
[37] (Figure 1J and Box 2). Given that each approach challenges the conventional approach of
one cell per droplet, species-mixing experiments were critical in establishing the single cell nature
of these assays. We expect newmethodswill benchmark their single cell performance with a sim-
ilar mixing framework.

Lessons learned: applications of single cell technologies must consider the frequency and pro-
portion of cell doublets for valid inference. Typically, new assays are benchmarked with species-
mixing experiments to quantify the doublet rate and assume that these measurements generalize
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Poisson loading: distribution of the
abundance of cells or beads per droplet
in a single cell experiment. The count
data follows a Poisson distribution,
where the mean number of features per
droplet equals the variance. Under an
optimal loading of one bead per droplet,
λ = 1, resulting in 36.8% of droplets with
zero or one bead each and 26.4% of
droplets with two or more beads.
Species mixing: experimental setup
designed to benchmark the occurrence
of two or more cells profiled in an assay.
Human and mouse cells are often
pooled together before running the
single cell protocol.
Sub-Poisson loading: distribution of
beads per droplet in a single cell
experiment when combined with close-
packed ordering, where the variance is
much lower than the mean. The
empirical distribution is skewed to where
most droplets have exactly one bead
loaded per barcode. For example, one
droplet-based technology reported
~15% of droplets with zero beads,
~80% with one bead, and 5% with two
or more beads per droplet [7].
Unique molecular identifier (UMI): in
the context of scRNA-seq, UMIs provide
complex barcode diversity before PCR
amplification steps, enabling the
identification of PCR duplicates, and
thereby yielding accurate gene
expression count values for downstream
bioinformatics analyses. In most scRNA-
seq applications, UMIs are 8–12 random
nucleotides.
to other contexts. Emerging methods of overloading droplets utilize diverse methods to increase
cell throughput while controlling doublet rates.

Leveraging ambient (non-cell) measurements
Baseline: all nucleic acids barcoded within a droplet are aggregated and assigned to a specific
cell.

New developments: statistical models can leverage droplets without cells to estimate ambient
molecules, which can be used to regress out potential contamination.

Ambient nucleic acids
Upstreamof the dropletmicrofluidics steps of single cell profiling, cells or nuclei are typically isolated
from tissues, blood, or a similar heterogeneous environment. Even in high-viability settings, some
debris, comprising nucleic acids from dead cells among other biological analytes, will be present
in these mixtures. From free-floating nucleic acids, ambient molecules (often RNA) will nonspecifi-
cally associate with the contents of viable cells in the microfluidic reaction (Figure 2A) [38].
Microfluidics workflows then barcode the nonspecific nucleic acids (Figure 2A, gray) and those
from the captured cell (Figure 2A, blue), introducing noise and potential artifacts in the data. At a
basic level, abundant ambient RNA will contaminate the true gene expression profile, leading to
noise in dimensionality reduction, clustering, and annotating cell types [39]. More critically, high am-
bient RNA can create artificial differences between conditions from differential expression analyses
due to variations in ambient RNA levels rather than underlying biology (Box 3) [40]. Ambient nucleic
acids can be particularly problematic in single nuclei RNA-seq (snRNA-seq) settings, including
tissues [41] and tumors [42].

Ambient molecules revealed through the knee plot
A noteworthy feature of droplet microfluidic single cell profiling is that the quantification of ambient
molecules can be achievedwith no special experimental design or modification to the technology.
Specifically, estimates from the first generation of the 10x Genomics Chromium chemistry indi-
cated that ~500 000 droplets will contain a bead for amplifying nucleic acid, but only ~10 000
of these droplets contain a cell under recommended loading conditions [7]. Consequently, hun-
dreds of thousands of empty droplets in a single cell genomics reaction will contain only ambient
molecules whenmolecules are sequenced for these barcodes. Although improved in subsequent
technology updates, the principle of an experiment yielding at least an order of magnitude more
empty droplets than contained within a cell remains [43,44]. Hence, the quantity and identity of
ambient features can be identified through analyses of the knee plot, a rank-ordered arrangement
of the number of molecules barcoded by each bead barcode (Figure 2B). We provide examples of
libraries with high and low contamination from knee plots where the abundance of unique reads
that separates the two plateaus represents the separation in nucleic acid content between drop-
lets containing cells or ambient molecules (Figure 2B).

Leveraging ambient molecules to improve data quality
Knee plot analyses are typically the first step in identifying which barcodes contain cells. When an
experiment focuses on well-established major cell types (e.g., cell line-mixing experiments), a ge-
neric cell-calling algorithm that considers the marginal distribution of UMIs per barcode can suf-
ficiently discriminate cell-containing droplets from empty droplets. In experiments to profile rare
cell subtypes, advanced methods that analyze the full barcode-by-feature matrix to identify real
cells with low RNA content and further correct for background contamination can recover rare
cell types that would otherwise be discarded [43]. Motivated by this concept, EmptyDrops im-
proves the discrimination of droplets containing cells from those lacking cells by using parametric
Trends in Biotechnology, Month 2024, Vol. xx, No. xx 5
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Figure 1. Approaches for validating and optimizing single cell measurements. (A) Representations of potential cell doublets from mixing experiments in droplet-
based assays, including homotypic and heterotypic doublets. (B) Schematic of species-mixing experiments to validate single cell measurements. (C) Example of typic
mixing experiment highlighting high-confidence human, mouse, and mixed doublet cells. (D) Estimates of cell yields and doublet rates under recommended,
overloading, and after doublet detection and removal (purple). Rates are estimated from previous species-mixing estimates [7] and Cell Hashing inferences of a six-plex
hashing experiment [24]. (E) Schematic of oligo-based methods for doublet-detection, including MULTI-seq [25] and Cell Hashing [24]. (F) Low-dimension embedding
of data from oligo-based hashing methods to identify cell doublets from a real hashing experiment [62]. (G) Example of low-dimensional embedding of single cell data
from cell state measurements [e.g., single cell (sc)RNA or single cell assay for transposase accessible chromatin (scATAC-seq)] used to infer potential heterotypic doublets
via simulated doublets and neighbor graph analyses. (H) The result of the computational procedure described in (G) where predicted heterotypic doublets are classified in
the high-dimensional space. Doublet calls (via scrublet) and clusters were generated from real scRNA-seq data [84]. (I) A general approach for overloading cells into drop-
lets and identifying doublets via donor genotypes. (J) Schematic of approaches for combinatorial pre-indexing of accessible chromatin [10], RNA [36], and protein [37].

Trends in Biotechnology
assumptions about ambient RNA or DNAmolecules [43,44], and cell calling is determined based
on a likelihood function rather than on the simple aggregate of all UMIs. Given that cell types may
contain variable abundances of RNA molecules, a more sophisticated model can discriminate
cells from droplets containing a surplus of ambient UMIs [43].

In addition to better discriminating true cells from background molecules, recent methods have
been developed to regress the ambient count signal from the cell profiles, mitigating issues re-
lated to errant molecular barcoding. For example, CellBender [45], SoupX [46], and DecontX
[38] estimate and remove the contribution of ambient RNA from cell profiles, thereby refining
the gene expression interpretation for individual cells (Figure 2B and Box 3). Analogous tools,
such as DIEM [47], utilize semi-supervised machine learning to remove ambient RNA contamina-
tion from snRNA-seq data. Although the benchmarking of each of these methods demonstrated
clear utility in real-world data sets, there is a trade-off between removing true noise (sensitivity)
and retaining true signal (specificity). To our knowledge, no systematic framework exists for de-
termining ideal methods or hyperparameters, and proper ambient signal removal likely involves
manual curation and validation via known marker genes in a data set-specific manner.
6 Trends in Biotechnology, Month 2024, Vol. xx, No. xx

CellPress logo


Box 2. Methods for identifying cell doublets during microfluidic overloading

Infecting cells into droplets for single cell reactions follows a Poisson distribution. As the multiplicity of infection increases
(i.e., the number of cells loaded), so too does the number of droplets with two or more cells, which produces an invalid
single cell measurement by definition. Thus, under manufacturers’ guidelines, cells are loaded at low concentrations,
but lowering doublet rates also increases the number of empty droplets that do not participate in the barcoding reaction.
Alternatively, more cells can be loaded into droplets and heuristics then used to identify doublets and remove them from
downstream analyses.

Orthogonal barcodes for doublet detection

Orthogonal sequences are designed to facilitate retention of the exogenous sequence throughout the microfluidic reac-
tion. For example, MULTI-seq [25] utilizes lipid-tagged barcodes that embed into the cell membrane, enabling the labeling
and pooling of a range of cell types, including those without well-characterized surface proteins for antibody binding. This
method is particularly advantageous for cells not amenable to Cell Hashing [24],which labels cells via an antibody that rec-
ognizes a highly expressed surface protein (e.g., B2M) with a diverse set of oligonucleotides, termed hashes. A limitation of
these methods has been the frequency of ‘negative’ cell barcodes, whereby no hash barcode is detected at insufficient
levels to assign the barcode to a corresponding hash identifier.

Genetic demultiplexing

The same input material can be pooled together from different donors before loading into the droplet microfluidic device.
After sequencing, cell doublets where each cell is derived from a different donor (in this case, heterotypic doublets) can be
readily identified and filtered using rigorous computational approaches. For example, demuxlet [31] utilizes a small set of
SNPs that are well detected by scRNA-seq techniques and defined for each donor a priori. With these data as input,
demuxlet uses a mixture model and maximum likelihood estimation to determine the most likely donor for each droplet
in a given sample, including whether the droplet contained cells from two different donors [31]. Given that the probability
of two cells coming from the same individual decreases linearly with the number of donors pooled together, common strat-
egies include eight or more individual donors per batch [35]. In situations where genotype references are unavailable or
incomplete, Vireo uses a Bayesian approach to demultiplex donors in pooled samples instead of a genotype reference
but achieves high-confidence classification [71]. For unrelated donors, these methods report the incorrect assignment
only ~1–2% of the time [31]. However, multiplexing multiple samples from the same donor or closely related donors would
invalidate this approach and lead to a higher false positive rate.

Combinatorial pre-indexing

Each workflow involves introducing one or more rounds of unique barcoding to label nucleic acids in cells from eight to 96
wells, where each well will contain a different pre-barcoding sequence. Subsequently, cells are pooled together before
loading into the microfluidic instrument, ultimately allowing multiple cells per droplet to be de-identified via a combination
of pre-index and droplet barcodes, termed ‘droplet-based combinatorial indexing’. In addition to these three ap-
proaches, which introduce a split-pool barcode upstream of droplet microfluidic capture, preliminary data have emerged
from a new framework called ‘Overloading And unpacKing (OAK)’, which appends a barcode after droplet barcoding [72]
to increase cell throughput by orders of magnitude.

Trends in Biotechnology
Similar to the interference caused by ambient RNA, noise from multimodal single cell-profiling
techniques, including oligo-conjugated antibodies to measure protein expression [e.g., cellular
indexing of transcriptomes and epitopes (CITE)-seq], can obscure true biological variation within
a data set. Although normalization approaches have been developed for proteo-genomic ADT
data, denoised and scaled by background (dsb) [48] provides a rational normalization to mit-
igate ambient signal in proteo-genomic assays (Box 3). The utility of this model-based transfor-
mation is revealed through the quantitative output of the ADT data, including the delineation of
proteins that express intermediate values of surface antigens, such as CD4 expression in mono-
cytes (Figure 2D). In other words, the raw count data from proteogenomic methods, such as
CITE-seq, is influenced by nonspecific binding, and models that account for ambient molecules
in empty droplets can mitigate noise and improve quantitative signals in these multimodal assays.

Lessons learned: not all nucleic acid barcodes arise from a cell in a droplet, and this rate of am-
bient nucleic acid can vary between experiments. Analyses of the empty droplets can identify am-
bient molecules, which can be regressed out of the cell-by-feature matrix or leveraged in more
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Figure 2. Quantifying and mitigating noise from single cell assays. (A) Schematic of RNA molecules captured in a
droplet microfluidic reaction, including ambient RNA molecules, which can arise from cell/nuclei dissociation of tissues before
droplet microfluidics and single cell genomics. (B) Knee plots of exemplar data comparing single cell samples with low or
high ambient signal. Droplets with no cells are highlighted in the gray box. Knee plots were adapted from preliminary data
from [85]. (C) Summary of LYZ expression from raw single cell data (left) compared with expression accounting for ambient
RNA via SoupX [46]. (D) Proteogenomic signal before (left) and after (right) modeling of ambient signal with denoised and
scaled by background (dsb) [48], highlighting CD4mid myeloid cells (purple). (C,D) reproduced from source code from [46,48]
via a Creative Commons License. Abbreviation: ADT, antibody-derived tag.

Trends in Biotechnology
sophisticatedmodels. New assays and computational methods that consider measurements be-
yond those in the barcodes identified as cells can improve the sensitivity and specificity of single
cell measurements.

Barcoding the contents of a cell only once (unless you do not want to)
Baseline: at most one oligo-conjugated bead should be present per droplet for single cell
barcoding.

New developments: computational approaches to detect barcode multiplets can improve
the data quality of existing assays, and relaxing the one barcode for one cell assumption can
enable assay development.

Sources of barcode multiplets
A common assumption in single cell assays is that a single oligonucleotide barcode represents
the nucleic acid of an individual cell. Given that the previous two sections discussed the
benchmarking and quantification of contamination of cellular nucleic acids (either from cell dou-
blets or ambient molecules), we now consider the complementary scenario where an individual
single cell has its contents barcoded by multiple distinct oligonucleotides, termed barcode multi-
plets. These events can arise from two potential scenarios: (i) a single droplet containing multiple
beads; or (ii) multiple oligonucleotides present on the same individual bead (Figure 3A). Every sin-
gle cell assay has barcode multiplets to varying degrees. Although this artifact is unlikely to have
invalidated any biological conclusions, the presence of barcode multiplets can create challenges
and opportunities in establishing and benchmarking assays.
8 Trends in Biotechnology, Month 2024, Vol. xx, No. xx
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Box 3. Removing and utilizing ambient molecules for normalization

If ambient nucleic acids stem from a highly abundant cell type, the annotation of biologically relevant features can be ob-
scured for lowly abundant cell types, such as the percent of cells positive for a feature [73]. Although the abundance of
ambient molecules will vary between different tissues and upstream preservation/processing workflows [39], the complete
elimination of ambient nucleic acid in library preparation is unavoidable in most contexts, motivating computational ap-
proaches to mitigate their impact on downstream analyses.

Regressing out ambient RNA counts

Multiple methods now account for ambient RNAs captured randomly and use statistical analyses to mitigate their impact
on downstream interpretation. For example, SoupX first assembles a profile of ambient RNA molecules from the empty
droplets in an experiment (highlighted in Figure 2B in the main text) and estimates the fraction of ambient molecules at-
tributed to each gene. Whereas SoupX directly uses a relatively simple heuristic to subtract the impact of ambient expres-
sion, newer approaches, such as CellBender, allow for more complicated models of ambient expression, albeit at a high
computational cost [45]. Using a cluster-aware model, SoupX adjusts the raw cell count data by regressing out the ambi-
ent RNA profile from the empty droplets, vastly improving the specificity of marker genes. For example, LYZ, a marker gene
of myeloid cells in peripheral blood mononuclear cells, was highly expressed in empty droplets and resulted in errant LYZ+

B and T cells (see Figure 2C in the main text) [46]. After correcting this experiment with SoupX, the expression of LYZ was
restricted to the myeloid compartment, as expected, validating the method. Methods such as DropletQC [74] and SiftCell
[75] implement quality control checks and statistical analyses to evaluate the integrity of droplets to ensure that the final
data set used for downstream analyses is of high quality and representative of single cells.

Modeling protein tags in empty droplets

The dsb [48] model addresses two sources of noise in protein expression data: (i) protein-specific noise, which stems from
ambient unbound ADTs captured during the creation of droplets; and (ii) cell-specific technical variance, evidenced by
shared variances linked to isotype antibody controls and background protein counts within each cell. Using a rationally
motivated model incorporating both noise terms, dsb similarly leverages the abundance of empty droplets to estimate
these parameters, resulting in a transformed ADT signal that allows for quantitative interpretation when comparing cells
in an experiment. One limitation of dsb is the reliance on isotype control antibodies, which may be absent from some
panels, resulting in the limited performance of data normalization.

Trends in Biotechnology
Detection of barcode multiplets in scATAC-seq data
The first software to detect barcode multiplets in droplet-based single cell data was bead-based
ATAC processing (bap). In brief, this workflow quantifies the degree of overlap of transposition
events between pairs of bead barcodes to identify instances where two barcodes share more
transposition events than expected, leading to a highly sensitive and specific classification of
barcodemultiplets [10,49]. When applying bap to scATAC-seq data sets released from 10x Geno-
mics, instances of nine or more bead barcodes were annotated by bap of belonging to the same
droplet (all barcodes annotated as ‘cells’ having a sequence in the whitelist and read abundances
above the knee threshold) [49]. These barcodes were enriched in the same biological cluster, sup-
portive of the idea that they may be ‘replicates’ of the same cell (Figure 3B, top). Examining the un-
derlying barcode sequence, a common seven-nucleotide variable region followed by a nine-base
constant in these barcodes (Figure 3B, bottom) were discovered, consistent with the idea that mul-
tiple ‘whitelisted’ barcode sequences were installed on an individual bead during synthesis.

Although bap was the first software solution to identify barcode multiplets, a new implementation
from 10x Genomics was incorporated into CellRanger-ATAC v1.2 that similarly analyzes shared
transposition events between pairs of barcode sequences to identify multiplets (https://support.
10xgenomics.com/single-cell-atac/software/pipelines/latest/release-notes). Whereas bap merges
different bead barcode sequences into a single cell barcode, the implementation in CellRanger-
ATAC simply discards multiplet barcodes after retaining the one bead barcode with the highest
number of fragments. Compared with v1.1, which did not consider barcode multiplets, there
was a substantial difference in the number of cells called for the same data set. For example, a pub-
licly available species-mixing data set analyzed by 10x Genomics resulted in a loss of 2347 of 11
721 cells called between subsequent versions of the software (Figure 3C). In other words, the
Trends in Biotechnology, Month 2024, Vol. xx, No. xx 9
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Figure 3. Detection and impact of barcode multiplets in single cell assays. (A) Schematic of potential bead/barcode outcomes assuming that a single cell or
nucleus is loaded into a droplet, highlighting two instances where barcode multiplets can arise. (B) Example of a barcode multiplet where nine valid single cell barcodes
(all passing the knee cutoff) marked the same cell (top). Based on analysis of the underlying barcode sequence (bottom), this multiplet originated from a bead with
many distinct oligonucleotide barcodes associating with an individual cell [49]. (C) Impact of barcode multiplets on cell count from a selected single cell assay for
transposase accessible chromatin sequencing (scATAC-seq) experiment (same data set). Version v1.1 of the CellRanger-ATAC software did not consider barcode
multiplets, whereas v1.2 retained the barcode with the highest read count, discarding other barcodes. (D) Schematic of key nucleic acid barcoding steps for scATAC-
seq (top) and single cell (sc)RNA-sequencing (bottom), noting that the diversity of molecules is variable between the two methods. (E) Distributions of beads per droplet
under Poisson assumptions of the mean barcodes per droplet (defined by λ). The theoretical optimum for % droplets with exactly one bead is highlighted at λ = 1.
(F) Summary of bead abundance per cell following computational bead oligo merging, including cells with two or more bead oligos. Data for (B,C) adapted from [49]
and for (F) adapted from [10]. Abbreviation: UMI, unique molecular identifier.
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loss of nearly 20% of barcodes called as cells was based solely on the same data, reflecting the
magnitude of the artifact. Barcode multiplet detection is still utilized in contemporary versions of
CellRanger-ATAC and CellRanger-ARC (for processing multiome data), limiting the impact of mul-
tiplets on data derived from these commercial kits when processed through the official software.
However, the marked change in cell yields due to this artifact (Figure 3C) warrants consideration
in new assay development.

Although multiple algorithms can now detect barcode multiplets for scATAC-seq, no such soft-
ware exists for scRNA-seq due primarily to an intrinsic difference in the assay barcoding. Namely,
the base-pair transposition events from scATAC-seq allow for a high-diversity identifier for each
fragment (Figure 3D). As a result, when two bead oligos are present in the same droplet, they
will amplify the same molecule at a low, but detectable rate. These shared amplifications can
be identified across the full set of molecules in an experiment due to the diversity of transposition
events (for more discussion and algorithm performance, see [10,49]). Conversely, for scRNA-
seq, diversity per molecule is in the form of UMIs, which are added in the reverse transcription
(RT) step. As a consequence, two different bead oligos would not share UMIs even if they amplify
the same original mRNAmolecule (Figure 3D). This intrinsic difference in the assays allows for the
sensitive and specific detection of barcode multiplets in scATAC-seq but not in scRNA-seq.

Leveraging barcode multiplets for method development
Although barcode multiplets confound the one bead–one droplet assumption, their occurrence
can be leveraged when benchmarking and developing new assays. For example, in establishing
the droplet single-cell (dsc)ATAC-seq assay [10], barcoded beadswere incompatible with close-
packed ordering. Indeed, the implementation of dscATAC-seq and the development of bap
10 Trends in Biotechnology, Month 2024, Vol. xx, No. xx
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produced a workflow with near-perfect detection and merging of barcode multiplets [10], result-
ing in most cells being barcoded by two or more beads in this assay (Figure 3E,F). Annotated
barcode multiplets can provide a built-in form of replication that can be leveraged to assess
assay or computational performance, including when developing and internally benchmarking
three other assays (Box 4). Using barcode multiplets as internal validations is conceptually similar
to preliminary bioinformatics approaches, such as molecular cross-validation [50] or self-
supervision [51], which have been used to benchmark technical or algorithmic measurements.
To our knowledge, barcode multiplets have not been analyzed in the context of ambient mole-
cules (Figure 2), although these artifacts likely coexist in nearly every single cell experiment,
whichmay enable more sophisticatedmodels of ambient nucleic acid estimation and subtraction.

Lessons learned:most single cell analyses assume that each cell has all its nucleic acids tagged
by one unique barcode. This assumption can be violated either by accident (impacting perceived
cell number) or on purpose for assay development (e.g., overloading microfluidic devices with
many beads). Utilizing this technical nuance of single cell genomics data can enable new dimen-
sions to assay development or interpret existing data.

Measuring the many facets of a cell simultaneously
Baseline: one ‘omic measurement (e.g., RNA or chromatin) is measured per assay.

Newdevelopments: strategies for co-opting in-droplet chemistry canmeasure additionalmodalities,
but careful consideration is required when measuring a barcoded surrogate of the intended analyte.

Multi-omic detection
Although themost common applications of single cell genomics remain single modality measures
of either transcriptome or accessible chromatin, new methods have emerged that facilitate the
Box 4. Leveraging barcode multiplets for assay development

Under standard assumptions for single cell sequencing, barcodemultiplets can confound interpretation because the same
cell will be profiled by multiple barcodes. However, barcode multiplets have also been utilized in developing and validating
new droplet-based assays. We note some of these examples here.

Bead overloading for increasing cell capture

Typical Poisson loading of beads into droplets requires the balance of empty droplets (where zero beads would be loaded
into droplets) versus barcode multiplets (where two or more beads would be loaded per droplet). Under Poisson statistics,
the maximization of exactly one bead per droplet occurs at a loading of λ = 1, resulting in 36.8% of droplets receiving zero
beads, 36.8% of droplets receiving one bead, and 26.4% of droplets having two or more beads (see Figure 3E in the main
text). However, assuming that barcode multiplets could be detected and subsequently merged, beads could be loaded at a
higher concentration to increase λ to 3, resulting in <5% of droplets receiving zero beads under Poisson loading conditions.

Use in benchmarking and validating in assay development

In HyPR-seq [76], the authors used hard resin beads from the Drop-seq protocol to establish an assay for detecting se-
lected genes via RNA-based probe detection. The authors utilized the fact that UMIs were encoded in the probes for gene
detection, thus enabling two different bead oligos to amplify the same (diverse) gene probe during in-droplet amplification.
This barcode multiplet correction allowed for more accurate cell counting and greater sensitivity [76]. In another example,
the Sperm-seq assay [77] was developed to quantify the prevalence of aneuploidy and recombination in tens of thousands
of individual gametes. Here, the authors identified 1201 barcode multiplets (termed ‘bead doublets’ in their work [77])
among 31 228 genomes profiled. Patterns in themultiplets were used to validate concordant measurements of crossovers
when the same cell was profiled multiple times. Finally, a recent approach called Slide-Tags [78] collapses the presence of
bead oligos originating from multiple beads patterned in a spatial array to establish a bona fide spatial single cell assay.
Together with dscATAC-seq, these four assays demonstrate the strategies for accounting for barcodemultiplets in estab-
lishing new genomic, epigenomic, multi-omic, and spatial assays.

Trends in
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detection of additional ‘omic features, such as perturbations, protein content, and cellular
clonality. The defining feature of these single cell multi-omics assays is that all measurements
occur for the same cell (Figure 4A), enabling integrative analyses of gene regulatory networks
[52–54], the impact of perturbations [55,56], or lineage biases [57]. A key concept in these inno-
vations is that these assays leverage existing detection methods without fundamentally changing
the key chemistry in droplets. Thus, many of these methods append new measurements to
existing high-quality profiles of the transcriptome or accessible chromatin. These additions are
enabled by molecular mimicry, where analytes are made to ‘look like’ their intended targets in
the single cell assay (Box 5). Moreover, these concepts have also been extended to single nuclei
profiling, including proteogenomic measurements, such as transcription factors [58].

Perturbation barcoding and detection
The development of RNA-guided gene-editing tools via CRISPR nucleases readily enables the
co-detection of genetic perturbations alongside measurements of cell state by the parallel
barcoding of the guide RNA (gRNA). This capability was first realized in Perturb-seq [14]. In
the first version of Perturb-seq, a designed gRNA library was individually barcoded, and long
read sequencing was used to connect barcodes to protospacers because the protospacer
was distal from the 3′ end of the RNA that would be detected with the standard Drop-seq chem-
istry. The flaw with this design, as revealed by subsequent studies, showed high levels of
protospacer/gRNA swapping, arising from reverse transcriptase recombining between tem-
plates of RNA genomes, within lentiviral particles during DNA synthesis (Figure 4B) [59,60]. This
template switching, especially prevalent when various gRNA-barcode viruses are co-packaged
and most frequently at homologous regions, disrupts the accurate identification of gRNAs. Ulti-
mately, this critical design failure was quickly corrected via a new vector used in CRISPR
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Figure 4. Concepts and opportunities in single cell multi-omics assays. (A) Summary of single cell multi-omic measurements. The same cells are represented in a
reduced-dimension space. Bone marrow mononuclear cells profiled with assay for transposase accessible chromatin sequencing (ATAC) with select antigen profiling by
sequencing (ASAP-seq) [16] are embedded with complementary measurements of cell types (from chromatin accessibility), cell surface protein, and clonality from
mitochondrial (mt)DNA mutations. (B) Summary of barcode swapping occurring during lentiviral packaging, a known confounder in the original Perturb-seq design.
(C) Schematic of reagents for proteogenomic workflows, including oligo-conjugated antibodies for assays such as cellular indexing of transcriptomes and epitopes by
sequencing (CITE-seq) [12] and M13 bacteriophages displaying nanobodies in PHAGE-ATAC [62]. (D) Summary of PHAGE-ATAC method [62], which amplifies single-
stranded (ss)DNA encoding protein binders directly. (E) Schematic indicating that PHAGE-ATAC reagents are renewable and are a key and novel feature in a single cell
assay. Abbreviations: E. coli, Escherichia coli; gRNA, guide RNA.
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Box 5. Examples of multi-omic detection methods

Most existing single cell kits have been optimized to detect a specific form of cellular molecule (i.e., poly-A transcripts in
scRNA-seq or Nextera-flanked DNA fragments in scATAC-seq). A common strategy to enable multi-omic detection is
to engineer molecules for detection in these assays to ‘look like’ what the assay intended to measure, thereby extending
one high-quality measurement into multi-omic detection. Examples of this molecular mimicry are discussed here.

M13 bacteriophages with genetic engineering

A genetic system was specifically designed for the M13 phagemid to comprise: (i) a nanobody that binds to a specific epi-
tope; (ii) a PAC-tag, which includes the Nextra Read 1 sequence to hybridize to the bead oligos; and (iii) the p3 phage coat
protein for displaying these elements on the phage surface (see Figure 4D in the main text). In this sense, the single-stranded
DNA in the phagemid looks like an ATAC fragment, allowing for efficient amplification using the existing ATAC-seq kit.

Aptamers containing capture sequences

Aptamers are RNAs that fold in a 3D confirmation and bind to specific targets of interest. Given that aptamers are RNA mol-
ecules, adding a polyadenylation sequence during synthesis readily allows for efficient capture and sequencing. Each
aptamer is directly identifiable by its nucleic sequence, obviating the requirement for barcoding the binding agent. Although
parsimonious, Apt-seq has low adoption, likely due to limited aptamer reproducibility and stability compared with antibodies.

gRNA detection with scATAC-seq

Additional approaches have used this mimicry approach for perturbations in other multi-omic assays. Spear-ATAC [61]
flanks the lentiviral gRNA with Nextera Read1 and Read2 sequences to facilitate the capture of gRNA fragments that will
be amplified during droplet scATAC-seq chemistry. This design capitalizes on a similarity of DNA molecules cut by Tn5
transposase, which are similarly flanked by Nextera sequences in the ATAC-seq chemistry, directly detecting the
protospacer to ensure no barcode swapping. A caveat of this approach is that most existing guide RNA libraries do not
contain Nextera sequences, requiring custom gRNA synthesis for compatibility with Spear-ATAC.

Barcoding heterogenous RNA molecules

In addition to measuring different analytes in multi-omic assays, emerging strategies have suggested paths for quantifying
diverse RNA species in single cell reactions. For example, preliminary evidence in other split-pool contexts indicates that
random hexamers [79] or rationally designed probes [80] can be used instead of poly-T, RT-based detections of tran-
scripts. Other approaches, such as Vasa-seq [81], append poly-A sequences to arbitrary RNA molecules, resembling
polyadenylated transcripts that can readily be recovered using standard commercial scRNA-seq kits. These modifications
may allow for more faithful sampling of the total RNA content of the cell [82].

Trends in Biotechnology
droplet-sequencing (CROP-seq), which directly barcodes the protospacer for the gRNA via a
rational vector engineering design and has remained reliable ever since [15]. Here, CROP-seq al-
lows the perturbation to occur closer to the critical functional unit (the protospacer guide RNA),
obviating potential barcode swapping. Analogous perturbation detection has been engineered
for concomitant readouts with scATAC-seq [61].

Proteogenomic barcoding and detection
In a similar vein of multi-omic innovation, proteogenomic tools use the same ‘mimicry’ approach
for facile detection inside droplets. For instance, ATAC with select antigen profiling by se-
quencing (ASAP-seq) enables a multimodal readout that simultaneously profiles accessible
chromatin, protein levels, and optionally mitochondrial DNA for cellular clonality by repurposing
the existing antibody–oligonucleotide conjugates (Figure 4A) [16]. Given that the bead oligo cap-
ture sequences on the scATAC-seq kit are complementary to the Nextra Read 1 sequence at-
tached to DNA fragments after Tn5 transposition, the poly-A CITE-seq reagents are not
immediately compatible. Thus, the critical innovation in ASAP-seq was a bridge oligo comple-
mentary to the poly-A antibody-oligo sequence on one end and the Read 1 sequence on the
other. This development allows existing CITE-seq reagents to be used directly in ASAP-seq with-
out requiring a new set of antibodies to be conjugated for capture with the ATAC-seq kit.
Trends in Biotechnology, Month 2024, Vol. xx, No. xx 13
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Outstanding questions
For a new droplet-based assay, has
the assay been verified to measure
single cells, and can cell doublets be
identified/quantified?

Can common modes of noise,
including ambient nucleic acids, be
quantified via experimentation and/or
accounted for via statistical modeling?

Can internal controls, including those
derived from multiple barcodes
per droplet, be used to quantify
reproducibility and/or performance?

Do the measured molecules directly
correspond to the biological feature,
or is there a potential failure mode
that would mismatch a barcode with
what it labels?
Whereas ASAP-seq andCITE-seq enable proteogenomicmeasurements via the covalent attach-
ment of an oligo to an antibody, Phage-ATAC (PAC)-tag [62] leverages an M13 bacteriophage
system in which genetically encoded antibody binders are attached to a PAC-tag (Figure 4C,
right), obviating the need for recombinantly expressed antibodies or covalent conjugations. The
M13 phagemid system uses nanobodies with known specificity to detect surface antigens and
quantify binding in droplets via the barcoding of the CDR3 hypervariable region, which directly en-
codes the protein binder (Figure 4D and Box 5). Although the barcode-swapping rate in CITE-seq
is minimal, the parsimony of the PHAGE-ATAC system upholds this principle of ‘getting as close
to the source’ as possible because the same piece of DNA that encodes the protein binder is
barcoded. Given that phages are effectively a renewable resource after infection in bacteria
(Figure 4E), these reagents are ideal for large-scale experiments. Similarly, Apt-seq utilizes
aptamer probes, which are nucleic acids that form a 3D fold and specifically attach to protein epi-
topes [63]. Unlike conventional antibody-tagging techniques, aptamer binding occurs via nucleic
acids, which can be readily identified through DNA sequencing, eliminating the need for tag
conjugation (Box 5).

In sum, coupling proteogenomic measurements to single cell genomics assays is the most ma-
ture multi-omic technology in droplet-based workflows, featuring several distinct protein detec-
tion and quantification modes. While CITE-seq is the most commonly used method, other
approaches, including Apt-seq and PHAGE-ATAC, provide a more parsimonious framework to
detect the nucleic acids that underlie the binding molecule rather than relying on a covalent at-
tachment of an oligo barcode to an antibody (Box 5).

Lessons learned: new multi-omic technologies can pair orthogonal measurements, including
protein abundance or perturbation, alongside standard measurements. When detecting these
modalities, barcoding and quantifying the sequence directly (e.g., DNA sequencing encoding
the CDR3 of binder or protospacer of gRNA) are the most robust means for quantifying multi-
omic features. Future assays must minimize or rigorously benchmark the use of surrogate
barcodes to avoid errant interpretation.

Concluding remarks and future perspectives
Following the first demonstration of droplet-based scRNA-seq nearly a decade ago [8,9], the
limits of these technologies have been redefined via new biotechnological tools and bioinformat-
ics analyses. In particular, baselines underlying these original developments have been
reimagined with developments in the single cell field. We highlight four instances of these innova-
tions and collectively suggest two themes that may catalyze continued innovation in single cell
technologies in the coming decades (see Outstanding questions).

First, when new single cell technologies are assessed, explicitly defining and testing the assay as-
sumptions can validate and enable future methodological advancements. In addition to experi-
mental assumptions about what is loaded into a droplet, namely a single cell (Figure 1), no
ambient molecules (Figure 2), and an individual bead (Figure 3), revisiting widely held assumptions
that assay baselines can enhance the interpretation of single cell genomics data. The interplay of
experimental and computational innovation in detecting barcode multiplets highlights this idea
(Figure 3). In this case, an algorithm that could detect barcode multiplets, allowed for the
superloading of beads into droplets, ultimately increasing the cell capture efficiency in the
dscATAC-seq assay [10]. As another example, a typical preprocessing step in scATAC-seq anal-
yses required the binarization of the peak-by-cell matrix upstream of dimensionality reductions
[28,64]. Recently, a pair of studies revisited this assumption, instead finding that the peak matrix
contained a dynamic range of values that improved performance in downstream analyses, such
14 Trends in Biotechnology, Month 2024, Vol. xx, No. xx
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as cell clustering [65,66]. Thus, methodological innovation can be driven by new wet-lab proto-
cols or computational approaches in developing new technologies.

Second, because the range of possible analytes measured in single cell genomics technologies is
ever-expanding, principled designs can enhance assay performance and reliability. Species-
mixing experiments (Figure 1) remain a gold standard for verifying single cell capture. Given that
new assays couple multiple measurements from the same cell, we highlight successful applica-
tions of multi-omic design (Figure 4) that have catalyzed the detection and quantification of het-
erogeneous analytes. Although many potential solutions exist, parsimonious methods allow for
greater interoperability and future development. For example, the bridge oligonucleotide in
ASAP-seq allowed for the reuse of existing CITE-seq [12] reagents despite the capture sequence
on the gel beads changing between assays. This economical design enabled rapid extensions,
including scCUT&Tag-pro [67], which maps histone modifications and links disparate measure-
ments through a common surface proteome quantification. Similarly, the capture strategy in
CROP-seq, which directly associates the cell barcode with the protospacer, allowed for more ro-
bust detection of the gRNA compared with a correlated barcode in the original Perturb-seq im-
plementation [14], ultimately mitigating an issue of barcode swapping that can occur during
lentiviral packaging [60]. Thus, establishing experimental systems that measure molecules as
close to their source as possible can bolster the utility and interpretability of new analytes in single
cell assays. In this sense, we highlight the transformative potential of new sequencing chemis-
tries, including long-read technologies [68] and bioinformatics workflows (e.g., scNanoGPS
[69] and Blaze [70]) that may provide deeper insights from direct measurements of the source
molecules.

In sum, the expansive biological utility of single cell genomics technologies has established these
assays as a critical workflow in the molecular biology toolkit. By reflecting on these innovations
over the past few years, this review provides a new perspective that may expedite future method
development.
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