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Inference and effects of barcode multiplets
in droplet-based single-cell assays
Caleb A. Lareau 1,2,3✉, Sai Ma 1,2,4, Fabiana M. Duarte 1,2 & Jason D. Buenrostro1,2✉

A widespread assumption for single-cell analyses specifies that one cell’s nucleic acids are

predominantly captured by one oligonucleotide barcode. Here, we show that ~13–21% of cell

barcodes from the 10x Chromium scATAC-seq assay may have been derived from a droplet

with more than one oligonucleotide sequence, which we call “barcode multiplets”. We

demonstrate that barcode multiplets can be derived from at least two different sources. First,

we confirm that approximately 4% of droplets from the 10x platform may contain multiple

beads. Additionally, we find that approximately 5% of beads may contain detectable levels of

multiple oligonucleotide barcodes. We show that this artifact can confound single-cell ana-

lyses, including the interpretation of clonal diversity and proliferation of intra-tumor lym-

phocytes. Overall, our work provides a conceptual and computational framework to identify

and assess the impacts of barcode multiplets in single-cell data.
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Droplet-based partitioning systems have become an essential
tool for single-cell genomics research. In contrast to plate-
based single-cell assays, droplet-based methods, including

scRNA-seq1,2 and scATAC-seq3,4 enable profiling of thousands of
cells in a single experiment. The marked increase in throughput is
achieved by parallel barcoding of cellular nucleic acids with beads
containing high-diversity DNA barcodes. Critically, downstream
computational analyses assume that one barcode sequence equates
to one cell.

In this work, we provide multiple lines of evidence that indicate
that cells often associate with multiple barcodes by (i) multiple

beads occurring within the same droplet or (ii) heterogeneity of
oligonucleotide sequences within a single bead (Fig. 1a). Here, we
refer to these instances whereby multiple DNA barcodes occur
within the same droplet as “barcode multiplets”. We find that
barcode multiplets can considerably impact single-cell analyses and
demonstrate that rare cell events (e.g., the analysis of cell clones) can
be particularly affected by this artifact. Further, we provide a
computational solution to identify these barcode multiplets in
existing single-cell datasets, particularly from the scATAC-seq
platform. Finally, we provide recommendations to mitigate these
biases in existing assays.
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Fig. 1 Quantification of barcode multiplets from multiple beads in 10× Chromium platform. a Schematic of bead loading variation and phenotypic
consequences. Droplets with 0 beads fail to profile nucleic acid from the loaded cell (“dropout”) whereas barcode multiplets fractionate the single-cell data.
Barcode multiplets can be generated by either heterogeneous barcodes on an individual bead or two or more beads loaded into the same droplet. The *
indicates the bead multiplet that can be quantified via imaging. b Representative example of beads loaded into droplets from the 10× Chromium platform.
The white box is magnified 3× for the panel on the right, revealing multiple beads loaded into droplets. Stars indicate beads (except 0) and are colored by
the number of beads contained in the droplet. The image is representative of a total of 30 fields of view taken from three independent experiments. c
Empirical quantification of number of bead barcodes based on image analysis over 3 replicates with previously published data (Zheng et al.2). d Percent of
barcodes associated with multiplets under the distribution observed in c. Error bars represent standard error of mean over the experimental replicates.
Source data are available in the Source Data file.
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Results
Bead multiplets quantified through imaging. While cell doublet
rates are routinely quantified by species-mixing analyses, analo-
gous multiplet rates for bead loading are scarcely discussed.
Importantly, commonly used droplet-based assays (e.g., the 10×
Chromium platform) leverage a close-packing ordering of beads5

to load predominantly one bead per droplet, thus achieving
a “sub-Poisson” distribution. First, we sought to test this
assumption and empirically quantify bead loading within dro-
plets. To achieve this, we loaded hydrogel training beads into
droplets following recommended guidelines and imaged the
resulting solution. Beads were readily visible and quantifiable per
droplet (Fig. 1b; Supplementary Fig. 1a–d), enabling empirical
estimates of the number of beads per droplet. A total of 3865
droplets spanning 30 total fields of view (FOV) over three
experimental replicates were quantified (Table S1; see Methods
section). Importantly, while the training beads largely do not
differ from those used in the regular protocol, the training buf-
fer (different from the typical reaction buffer) is required to
visualize beads after loading.

On average, we found that 16.1% of droplets contained no
beads, 80.0% contained exactly one bead, and 3.9% had two or
more beads (Fig. 1c). These results were consistent with the
previously reported results of this platform (“Zheng”)2 and
confirm the sub-Poisson loading of beads into droplets (compare
to Supplementary Fig. 1e for optimal Poisson loading). While the
mean of the bead loading was consistent with previous reports,
we note considerable run-to-run variability from our imaging
replicates, ranging from 0.8 to 8.4% (Supplementary Fig. 1f).
Furthermore, we noted occurrences of large droplets with
multiple beads (Supplementary Fig. 1g) that likely originated
from the errant merging of several individual droplets, yielding
another source of potential barcode multiplets. While our
imaging results indicate that the occurrence of bead multiplets
likely varies between machines and individual runs, we note that
the training kits used in our experiment are ultimately a proxy for
the reagents used in producing single-cell data. Thus, our
estimates may reflect greater variability in the bead doub-
let rate than what is present in many datasets. Regardless, our
results suggest that multiple beads may co-occur in droplets and
motivate additional computational analysis to determine potential
barcode multiplets.

While our estimate of the occurrence of multiple beads in
droplets confirms previous reports2, we emphasize that this
problem is exacerbated when considering potential barcodes in
single-cell data. On average, we estimate that 11.4% of barcodes
would represent barcode multiplets, reflecting droplets with
heterogeneous oligonucleotide sequences (Fig. 1d; see Methods
section). Moreover, we note that our estimate from imaging
alone provides a lower-bound estimate for the true occurrence
of barcode multiplets for two reasons. First, droplets with four
or more beads were assigned a count of four since the exact
number of beads could not be reliably determined in these
instances (e.g., Supplementary Fig. 1d). Second, imaging cannot
evaluate the possibility of heterogeneous beads, a second class
of artifact that leads to barcode multiplets (Fig. 1a). Despite the
potential for alarmingly high rates of barcode multiplets, the
effect of this confounding phenomenon has not been system-
atically considered in single-cell analyses. Intuitively, these
observed barcode multiplets fractionate data from the cell to
multiple barcodes, resulting in a reduction of data per cell and
the substantial overestimation of the total number of cells
sequenced by artificial synthesis of barcodes reflecting the same
single cell. With the potential for this artifact confirmed by
imaging, we sought to further understand its properties and
effects in single-cell data.

Identifying barcode multiplets in 10× scATAC-seq with bap.
Recently, we developed a computational framework called bead-
based ATAC processing (bap), which identifies instances of
barcode multiplets in droplet single-cell ATAC-seq (dscATAC-
seq)3. Critically, this approach discriminates between multiple
true cells and barcode multiplets by considering the location of
Tn5 insertion sites, noting that barcode multiplets would dis-
proportionately amplify the exact fragments (Fig. 2a; Supple-
mentary Fig. 2). In other words, our computational approach
leverages the molecular diversity of Tn5 insertion sites across the
genome to identify pairs of barcodes that share more insertion
sites than expected and merge these corresponding barcode pairs
(Fig. 2a). Previously, we utilized bap to facilitate super-loading
beads into droplets to achieve a ~95% cell capture rate with a
mean 2.5 beads/droplet3. We reasoned that bap may identify
barcode multiplets in 10× scATAC-seq data.

After updating bap to facilitate processing of the 10× scATAC
data (Supplementary Fig. 2; see Methods section), we conducted
an initial in silico experiment to verify the applicability of our
approach to 10× scATAC-seq data. Here, we combined two
channels from a similar biological source (~5000 cells of
peripheral blood mononuclear cells; PBMCs) and executed bap
on the resulting combination (Fig. 2b; see Methods section). As
any barcode pairs merged between channels would be false
positives, our analysis facilitated an estimation of the false
positive rate of our approach in 10× data. After executing bap
with the default parameters, 1874 barcode pairs were identified as
sharing a markedly high rate of shared transposition events.
Specifically, 931 pairs from channel 1 (Fig. 2c) and 943 pairs from
channel 2 (Fig. 2d) were identified. However, zero pairs were
identified between channels (Fig. 2e), indicating a very low false
positive rate for bap when applied to this assay. Moreover, the
shape of the ranked-ordered barcode pair curves for the channels
separately were distinct from the between-channel curve
(Fig. 2c–e). Taken together, these results support the utility of
bap in inferring barcode multiplets from the 10× platform.

After establishing the applicability of bap for 10× scATAC-seq
data, we sought to better understand the properties of barcode
multiplets, focusing on two datasets (“This Study” and “Public”;
see Methods section) of ~5000 human PBMCs (Fig. 3a). Overall,
we estimated the percentage of barcodes in multiplets were 13.2%
(This Study; Supplementary Fig. 3a) and 17.6% (Public; Fig. 3b).
These cell barcodes were identified from the high-quality, error-
corrected barcode sequences from CellRanger with abundant
reads in peaks. Additionally, since individual barcodes in the
space of all possible barcodes are separated by a minimum
Hamming distance of three in the 10× platform, the high
prevalence of barcode multiplets is unlikely to be explained by
sequencing errors alone. Importantly, these implicated barcodes
are normally utilized in downstream analyses, including cell
clustering and clonotype abundance estimates. Additional
analyses suggested that a greater number of multiplets were pre-
sent in the library but did not pass thresholds for reads detected
due to the fractionation of data associated with these barcodes
(Supplementary Fig. 3b; see Methods section).

Surprisingly, from these experiments, we observed instances in
both datasets where barcode multiplets contained at least seven
distinct barcodes (Table S2). In particular, we observed two
instances of multiplets containing nine unique barcodes in the
Public dataset. Of note, each implicated barcode contained a
restricted longest common subsequence (rLCS) of 9 (Fig. 3c; see
Methods section). We suggest that these barcode multiplets likely
reflect error during barcode synthesis resulting in a single bead
with multiple barcodes, resulting in a “complex bead” (Fig. 1a).
Visualization of these barcode multiplets from dimensionality
reduction using t-distributed stochastic neighbor embedding (t-
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SNE) confirmed these barcodes reflect markedly similar chroma-
tin accessibility profiles (Fig. 3d; Supplementary Fig. 3c). Overall,
barcode multiplets generally co-localized with barcode singlets
and do not dramatically alter the interpretation of cell types in an
embedding (Fig. 3e). However, we find that certain regions of the
t-SNE embedding contained a disproportionate concentration of
barcode multiplets, which may lead to errant identification of
presumed rare cell types (e.g., five unique multiplets shown in
Fig. 3e).

To further elucidate these identified barcode multiplets, we
annotated these barcodes with graph-based Louvain clusters
(produced using the default CellRanger execution). As expected,
we observed a significant enrichment of barcode multiplet pairs
occurring in the same cluster (91.1% for This Study; 74.1% for
Public) compared to a permuted background (11.6% and 8.6%,
respectively; Supplementary Fig. 3d; see Methods section). We
note that barcode multiplets not within the same cluster largely
reflect barcodes split between multiple clusters of the same cell
type (e.g., myeloid cells; see Multiplet 5 in Supplementary Fig. 3c
and Table S3). Additionally, we observed a statistically significant
association between the Louvain cluster assignment and inferred
barcode multiplet status for both This Study (p= 0.0065; chi-
squared test) and Public datasets (p= 2.46e–05; chi-squared test;
see Methods section). These results indicate that the barcode
multiplets can occur in clusters unevenly, potentially confounding
inferences regarding cell-type abundance. Additionally, through
iteratively downsampling and re-executing bap, we confirmed the
stability of our metric with sequencing depths as low as a
median 10,000 fragments detected per barcode (Supplementary
Fig. 3e; see Methods section), confirming the robust utility of
this approach. Overall, as these barcode multiplets represent
quasi-independent observations of the accessible chromatin
landscape of the same single cell, we suggest that these identified
barcode multiplets may be utilized in a variety of different
useful applications. Examples include determining sequencing

saturation, inferring sequencing biases, and benchmarking
bioinformatic clustering approaches. Furthermore, these barcode
multiplets can be merged to improve data quality3.

Contributions of types of barcode multiplets. Having verified
the overall detection of the effects of barcode multiplets in these
datasets, we sought to determine the relative contributions of each
source of barcode multiplets to the overall abundance (Fig. 1a).
To achieve this, we established a null distribution by computing
the rLCS for random pairs of barcodes from the 10× whitelist (see
Methods section). Over 1,000,000 sampled pairs, we determined
that pairs with an rLCS ≥ 6 were extremely uncommon assuming
an independent co-occurrence (<0.5% probability of co-occur-
ring; Supplementary Fig. 3f). Thus, for inferred multiplets with a
mean rLCS ≥ 6, we interpret these to be most likely caused by
heterogeneous barcodes within a single bead. After computing the
mean rLCS between pairs of barcodes per multiplet, we deter-
mined that 87.5% of multiplets were likely caused by these
complex or heterogeneous beads in the Public dataset (Fig. 3f).
Using this classification, we could further estimate the prevalence
of these complex beads to be 6.41% in this dataset (see Methods
section). Parallel analyses for This Study dataset yielded similar
results (83.5% of barcode multiplets were due to complex beads;
4.95% of beads were heterogenous beads). Interestingly, the
percent difference between the log2 number of valid fragments
for these two classes of multiplets showed greater variability in the
number of fragments per barcode for the complex beads than for
barcode multiplets presumably caused by two beads (Fig. 3g; see
Methods section). This result supports the idea that there may be
a predominant individual barcode sequence on these complex
beads though there is detectable heterogeneity. Finally, as 10×
recently released their v1.1 “NextGem” design, we processed two
additional datasets that were run with the two different chip
designs in parallel. Our results confirm that the abundance of
barcode multiplets persists across both of these two different chip
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Fig. 2 Verification of bap to identify barcode multiplets using 10× scATAC-seq data. a Schematics of methodology to detect barcode multiplets whereby
cellular nucleic acids are tagged by two different oligonucleotide sequences and later inferred from sequencing a scATAC-seq library from the same Tn5
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designs (Fig. 3f) as well as the rates of complex beads and mul-
tiple beads underlying the multiplets (Supplementary Fig. 3g).

External corroboration of barcode multiplets. In response to a
pre-print version of our article6, 10× Genomics released a letter
with a software solution to identify multiplets from the output of
the CellRanger-ATAC pipeline. In principle, their approach
similarly utilizes the molecular diversity of Tn5 cut sites to
identify putative barcode multiplets. After obtaining this script,
we evaluated our two well-characterized PBMC datasets and
determined that the rates of barcode multiplets were extremely
similar as >98% of barcodes were concordantly classified as
belonging to a barcode multiplet or not (Supplementary Fig. 3h;
see Methods section). As a solution to the barcode multiplet
artifact, the 10× method discards the lower abundance barcodes
per multiplet. While further analysis is required to determine the
optimal strategy for handling barcode multiplets, these results
corroborate our estimates inferred and reported from bap.

Confounding of clonal lymphocytes due to barcode multiplets.
We suggest that many applications of the 10× Chromium plat-
form are unlikely to be impacted by bead multiplets. However,
droplet single-cell approaches are now employed for purposes
requiring increasingly precise quantitation, such as highly mul-
tiplexed perturbations7, clonal lymphocyte analyses8, or diag-
nostics9. Thus, for analyses of rare events, such as those routinely
quantified in CRISPR perturbations or in clonal analyses of cells,
the surprisingly high prevalence of barcode multiplets may

become particularly problematic. As one example, we hypothe-
sized that barcode multiplets may significantly alter quantitation
of cell clones distinguished by unique B-cell receptor (BCR) and
T-cell receptor (TCR) sequences in a tumor microenvironment
(Fig. 4a). Though there is no current approach to define bead
multiplets in scRNA-seq data, we reasoned that certain abundant
BCR and TCR clonotypes may be explained by complex beads
representing one true cell (similar to Fig. 3c). To test this, we
reanalyzed a publicly available dataset generated using the 10× V
(D)J platform that analyzed lymphocytes from a non-small-cell
lung carcinoma (NSCLC) tumor (Fig. 4a). Indeed, we observed
two instances of a BCR clone with four or more cells that could be
more parsimoniously interpreted as barcode multiplets derived
from a single B-cell (Fig. 4b). In particular, all presumed cells
from these clones shared an rLCS of ≥9, an extremely unlikely
event assuming true clonal cells would be randomly assigned
barcode sequences (Supplementary Figs. 3f, 4a). Indeed, the
distribution of the rLCS across all BCR clonotypes indicated a
detectable bias indicative of barcode multiplets (Supplementary
Fig. 4a; see Methods section). Furthermore, we identified addi-
tional clones that were depicted with a more complex hetero-
geneous structure that still broadly reflected bead synthesis errors
(Fig. 4c).

Having established the clear possibility of barcode multiplets
occurring in these data, we sought to determine how the
interpretation of the overall clonality would be changed when
accounting for the barcode multiplets. Using conservative
estimates of barcode multiplets from the scATAC-seq analyses,
we conducted a series of simulations (see Methods section;
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Table S3). Overall, the percentage of cells associated with a
clonotype comprised of at least two cells decreases considerably
for both BCR (24.5–18.6%; Fig. 4d) and TCR (23.6–17.9%;
Fig. 4e) clonotypes. Further analyses indicated a clone false
discovery rate as high as 23.5% (BCR) and 22.5% (TCR) in these
data (see Methods section), painting a much more conservative
picture of clonality within NSCLC tumors. The results from these
simulations indicate that bead multiplets may significantly
confound clonal analysis and that this quantifiable discrepancy
may falsely lead to conclusions of clonal expansion of
lymphocytes in primary tumors.

Discussion
Overall, our work provides a perspective to consider barcode
multiplets in single-cell data. Though the exact chemistry of the
training beads and reaction is different than what is typically
employed in the 10× single-cell reactions, our imaging results
confirm detectable bead multiplets as previously reported2.
Additionally, we show that bap, a computational algorithm
designed to infer barcode multiplets, can be applied to sequenced
scATAC-seq data from the 10× platform and confidently identify
barcode multiplets. As the rates inferred from imaging and from
bap are derived from distinct sources (i.e., bead/droplet counting
versus sequencing), discretion is required when comparing
between the detection modalities. Further analyses of multiplets

identified by bap indicate that putative heterogeneity of beads in
the 10× reaction is the predominant driver of the surprisingly
high rates of multiplets in these datasets. Our analyses of clonal
cells marked by BCRs and TCRs further suggest that bead
sequence heterogeneity may be an artifact present across multiple
sources of 10× single-cell data.

Conceptually, the presence of heterogeneity in beads is unlikely
to be caused by an on/off process and instead likely exists as a
spectrum across all beads used in these assays. As the estimated
number of complex beads relies on sufficient amplification and
detection of lower-frequency barcodes inside of droplets, the
proportion of barcodes affected by this artifact becomes a func-
tion of the read depth (Supplementary Fig. 3e) and the barcode
threshold (Supplementary Fig. 3b), which are in turn functions of
the underlying chemistry of the assays. While our estimation of
the clone false discovery rate assumed comparable rates for bar-
code multiplets for scATAC-seq and scRNA-seq methods, tech-
nical differences across these assays could also result variable
barcode multiplet abundances. As such, our work motivates
further investigation into the relationship between barcode mul-
tiplets and clonal diversity across various technical platforms.

As single-cell approaches move toward the precise quantifica-
tion of rare cell types, trajectories, perturbations, and clones, an
understanding of potential artifacts is essential as their con-
founding effects may become exacerbated in large datasets.
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Fig. 4 Confounding of intratumor clonal lymphocytes inference from barcode multiplets. a Schematic of intra-tumor lymphocytes identified from single-
cell V(D)J sequencing on the 10× platform. b Identification of two presumed clonotypes composed of five and four barcodes. These clonotypes are likely to
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Additionally, as these measurements move toward clinical
applications9, particularly in tumors where TCR repertoire may
serve as a prognostic biomarker10, barcode multiplets may sig-
nificantly confound interpretation. In some analyses (with <15%
clones), we anticipate that many identified clonal cells may arise
from bead multiplets. While our existing computational approach
(bap) can facilitate the identification of barcode multiplets in
scATAC-seq data, further experimental and computational tools
are needed to more broadly identify these effects in RNA or
genome sequencing droplet-based assays. We envision a combi-
nation of dense exogenous barcodes via cell hashing11 and
evolved by CRISPR-Cas912 or intrinsic features such as clonal
mutations, rearrangements, or highly correlated abundances with
barcode sequence similarity metrics could be leveraged to better
infer barcode multiplets. Such approaches would complement
existing tools that robustly identify cell doublets13,14 and empty
droplets15 from droplet-based scRNA-seq and further mitigate
hidden confounders in single-cell data. Until then, we suggest that
inferences regarding rare cell events should be corroborated
across multiple channels or technologies to validate interpreta-
tion. Moreover, we acknowledge contexts where multiplets can be
used to benchmark features of droplet-based assays as have been
recently described16.

Taken together, our estimation and identification of barcode
multiplets has a wide range of potential applications and con-
founding effects that influence widely used droplet-based single-
cell assays.

Methods
Loading and visualizing bead loading in droplets. We used the 10× Chromium
Controller Training Kit (PN-12024, PN-120238) to generate GEMs following
manufacturer’s instructions. The GEMs were carefully collected without disrupting
the emulsion. After GEM formation, 10 µL of GEMs from each 10× channel was
immediately loaded onto Countess Cell Counting Chamber Slides (C10228,
Thermofisher) for visualization. We captured ten bright field images under an
Olympus IX70 microscope, and beads per droplet were counted based on manual
inspection of images. To quantify the proportion of barcodes affected by multiple
beads (barcode multiplets), we used the following equation:

%Multiplets ¼
X4

b¼ 2ð Þb nb=
X4

b¼ 1ð Þb nb ´ 100;

where b is the number of beads present in a given droplet and nb is the number of
droplets with beads. Here, the expression is capped at 4 as droplets with 4+ beads
could not be reliably quantified. Thus, in these instances, the value of barcodes per
droplet were conservatively assigned a count of 4. For the Zheng et al.2 data, we
used the following abundances from previous imaging data: 15% of droplets had 0
beads; 80% of droplets had 1 bead; and 5% of droplets had 2 beads. As neither the
raw data nor the quantification values have been published, these values were
approximated from an examination of a plot previously reported2.

Profiling PBMCs using 10× scATAC-seq. For 10× scATAC-seq experiments with
PBMCs (PB003F, Allcells), frozen cells were quickly thawed in a 37 °C water bath
for about 30 s and transferred to a 15 mL tube. Five milliliter of pre-warmed RPMI
1640 (ATCC, 30-2001) supplemented with 10% fetal bovine serum (FBS) were
added to the sample drop by drop. The cells were pelleted by spinning at 300 g for
5 min at room temperature. The supernatant was removed, and cells were washed
with 1 mL PBS. The cells were then pelleted again, resuspended in 1 mL PBS, and
used for 10× ATAC v1.0 protocol following manufacturer’s instructions. The
corresponding library was sequenced on an Illumina NextSeq 500.

Data preprocessing. Raw sequencing data was processed with Cell Ranger ATAC
version 1.0.0. Reads were aligned to the hg19 reference genome available on the
10× Genomics website. Processed 10× PBMC datasets were downloaded from
https://www.10xgenomics.com/resources/datasets/ from the version 1.1 PBMC 5k
scATAC-seq dataset. The requisite input files for bap included the.bam file and the
high-quality barcodes file. Additional annotations from Louvain clustering and t-
SNE coordinates were also downloaded for downstream visualization and analyses.
For the comparison of the chip technologies (Fig. 3g), we again downloaded the
PBMC 5k scATAC-seq datasets from the “Chromium Next GEM ATAC
Demonstration.”

Processing 10× scATAC-seq data with bap. In order to facilitate the processing
of 10× scATAC-seq data with bap, no major substantive changes were required for
the underlying barcode multiplet identification algorithm that has been previously
outlined3. However, additional command-line options were added, including the—
barcode-whitelist flag, which imports the error-corrected, quality-controlled bar-
codes identified as “cells” by CellRanger, enabling analysis of the filtered output
from the default 10× pipeline. This functionality augments the default process in
bap where abundant barcodes are identified via quantification and knee-calling in
terms of total reads observed per barcode. Versions 0.5.9+ of bap facilitate full
analysis and merging of barcode multiplets with 10× scATAC-seq data.

In silico mixing experiment. Using two different public PBMC 5k datasets, we
sought to determine a putative false positive rate for the application of bap to 10×
scATAC-seq data. Here, we denoted the PBMC-5k “Public” dataset as Channel 1 and
the PBMC-5k from the NextGEM beads as Channel 2. We modified the CB tags
(which contains the error-corrected barcodes) in the.bam files for each channel to
ensure that each barcode for each experiment was uniquely identifiable. These mod-
ified bam files were subsequently merged. Next, the same modification to the barcodes
was made, and the two high-quality barcodes files were combined into a single file. We
then executed bap using the default parameters with this merged.bam and merged
barcode list file. Using a single threshold determined by the knee call, we identified
pairs of barcodes originating from the same or different channels as summarized in
Fig. 2c–e. The top 500,000 barcode pairs were plotted in rank order for each of these
three plots, and the same single threshold was visualized in all three panels.

Assigning bead barcodes to multiplets. The identification of multiplets follows
the same strategy previously described3. In brief, a per-barcode pair summary
statistic (modified jaccard index) is computed using the one base pair location of
Tn5 insertions. We emphasize that this statistic has been validated using an
orthogonal oligonucleotide library as we have previously described3. From this
distribution of millions of barcode pairs, we computationally infer an inflection
point threshold T (similar to a”knee-call” used by CellRanger to identify true cell
barcodes). To derive multiplets, we iteratively consider the barcode pairs (e.g., b1
and b2) with the highest remaining overlap score and append any additional
barcodes whose overlap value with either b1 or b2 exceeds T. For example, if the
statistic between b1 and b3 exceeds T, then b1, b2, and b3 are assigned to one
multiplet. This process continues until all barcodes are assigned a multiplet that
had an overlap score exceeding T. All remaining barcodes are assigned as singlets.
To facilitate processing of the 10× scATAC-seq data, we modified the command
line interface and internal data structures of bap, but the conceptual basis and
execution is the same as previously described3.

Classifying and quantifying complex beads. To determine multiplets driven by
putative bead barcode synthesis errors, we considered all pairs of barcodes within
an annotated multiplet and computed the restricted longest common subsequence
(rLCS) between them. Explicitly, the rLCS is the largest consecutive number of
characters that match between two strings without shifting the strings. We note the
necessity of defining a distance metric (rLCS) that is distinguished from the longest
common subsequence (LCS) as our metric does not allow insertions or deletions
when performing the string matching. Additionally, rLCS is distinguished from the
Hamming distance as the matching characters must all occur in a continuous unit
(which is not enforced by Hamming).

To determine an appropriate threshold to classify multiplets as having
originated from multiple beads or a single heterogeneous bead, we established a
null distribution of the rLCS shown in Supplementary Fig. 3f. To achieve this,
1,000,000 random draws of barcode pairs were determined and the rLCS was
computed. We selected an rLCS threshold of 6 as pairs with an rLCS ≥6
represented less than 0.5% of the data, which was used to classify multiplets from
the real data (Fig. 3f). To determine whether the number of fragments was similarly
captured between barcodes contained in multiplets, we computed the pairwise
percent difference of the log2 unique fragments (“passed_filter” in the CellRanger-
ATAC.csv file). The per-multiplet average of the mean pairwise percent difference
is plotted in the boxplots in Fig. 3g, and we used a two-sided Kolmogorov–Smirnov
test to verify that the droplets containing multiple beads had a more even ratio of
reads compared to multiplets driven by bead heterogeneity.

To quantify the percent of beads that had heterogeneity, the numerator was the
number of multiplets identified with an rLCS ≥ 6 (from Fig. 3f). The denominator
was the total number of barcodes analyzed while (1) still counting all barcodes in
perceived bead multiplets but (2) collapsing the heterogenous barcode multiplets to
only 1 barcode. For example, in the “This Study” dataset, the total number of
barcodes passing the CellRanger knee was 5453. Of these, 4732 barcodes were from
singlets, 121 barcodes were associated with multiplet beads per droplet (and thus
not complex), and 600 barcodes were associated with 253 complex beads. The
complex bead rate can be computed as follows:

Complex bead rate ¼ # complex beads
# singlet beadsþ# beads in beadmultipletsþ# complex beads
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For our example of the “This Study” dataset:

253
4732þ 121þ 253

¼ 4:95%

Chi-squared test for cluster/multiplet. To test for association between barcode
multiplets and cluster identification, we performed a chi-squared test for inde-
pendence. For the n Louvian clusters identified by CellRanger, we assembled a 2 ×
n contingency table, tabulating barcodes into corresponding entries in the con-
tingency table. The two rows specified whether each bead barcode was predicted to
occur in a multiplet or not as identified by bap. P-values were computed using the
chi-squared statistic with n− 1 degrees of freedom.

Evaluation of bap with variable input barcodes. To test the abundance of bar-
code multiplets with different numbers of considered barcodes, we executed bap
with 5000–10,000 barcodes at intervals of 1000 barcodes (six additional executions)
in addition to the 5205 found by CellRanger’s knee call. Each barcode set was
nominated based on the ranking of fragments in peaks, the same metric used by
CellRanger to determine an optimal threshold. Our results (Supplementary Fig. 3b)
show that the inferred cutoff underestimates the barcode multiplets in the Public
data, consistent with our imaging results. We interpret this plot to show that
barcode multiplets often occur near the inflection point (consistent with these
barcodes having fewer reads due to the fractionated data). However, this rate
flattens when additional barcodes added do not represent multiplets but other
ambient fragments that cannot be associated with a highly-observed barcode.

Enrichment for barcode multiplet pairs in the same cluster. For each barcode
multiplet identified by bap, we considered all possible pairwise combinations of
constitutive barcodes. For example, multiplets consisting of precisely two bead
barcodes had one pair whereas multiplets consisting of four barcodes contained six
barcode pairs (all combinations; choose two). For these pairs, we computed the
proportion that occurred in the same Louvain cluster produced by the default
CellRanger execution. A background rate was generated by performing 100 per-
mutations of the full dataset where cluster labels were permuted.

Downsampling analyses. To evaluate the stability of the bap statistic as a function
of coverage, we downsampled the dataset generated here (“This Study”) at intervals
of 10% and reran bap on the resulting downsampled.bam files. Here, we used the
full set of high-quality barcodes determined from the CellRanger execution on the
full dataset. Moreover, we determined the set of identified barcode pairs from the
full dataset as a “true positive” set of pairs to compare the downsampled results.
Supplementary Fig. 3e shows the results of this downsampling, including the 40%
subsample (that corresponded to a median 10,132 fragments per barcode) that
achieved >90% sensitivity in detecting the set of barcode pairs from the full data.
Critically, in each of the nine downsampled executions of bap, no barcode pairs
were identified that were not present in the full dataset.

Comparison with 10× solution. After contacting 10× support, we obtained the
“clean_barcode_multiplets_1.0.py” script, which identifies barcode multiplets in
single-cell ATAC-seq data. We executed this code and evaluated the output for the
two scATAC-seq datasets closely analyzed in this work (“Public” and “This
Study”). While the procedure used to identify multiplets similarly utilizes shared
Tn5 insertions, the treatment of multiplets once detected is different from bap.
Specifically, for each multiplet, the barcode with the most unique fragments is
retained and the other barcodes are filtered out. Further, 10× refers only to the
barcodes that are filtered out as “multiplets”, rather than counting the most pre-
valent barcode as part of a barcode multiplet as we’ve done throughout this
manuscript. For comparison purposes, we used our definition of barcode multiplet
(as stated in the abstract) and reported the rates from each tool (see script in Code
Availability for the exact procedure). Finally, to compute the concordance between
the two methods, we assigned each barcode whether or not it was part of a barcode
multiplet from both sources and report the percentage of barcodes that had a
matching annotation across the detection methods.

Estimation of multiplet-adjust BCR/TCR clonotype abundances. In order to
estimate the number of cells contributing to each clonotype (defined by a unique
BCR or TCR sequence), we downloaded the per-barcode clone identification files
(BCR: vdj_v1_hs_nsclc_b_all_contig_annotations.csv; TCR:
vdj_v1_hs_nsclc_t_clonotypes.csv) from the 10× CellRanger output for the public
NSCLC tumor dataset. Here, each barcode is assigned a clonotype group when
detected with high confidence in the CellRanger pipeline. To simulate the occur-
rence of barcode multiplets, we executed the following simulation procedure.

For each barcode i with a total of n barcodes in the experiment (all assigned a
clonotype), we simulate a corresponding multiplet value mi which defines the
barcode multiplicity; i.e., the number of unique barcodes that overall co-occur with
barcode i inside a theoretical droplet. We performed our simulation by specifying

the following probability distribution function:

P mi ¼ 1ð Þ ¼ 0:93; P mi ¼ 2ð Þ ¼ 0:05; P mi ¼ 3ð Þ ¼ 0:01;

P mi ¼ 4ð Þ ¼ 0:005; P mi ¼ 5ð Þ ¼ 0:005

Importantly, the values defined in the probability distribution function are
grounded in the empirical estimates from bap across our two datasets but likely
represent conservative estimates assuming a similar distribution of barcode
multiplets from scATAC-seq holds in this assay (see Table S3). In other words,
P(mi= 1)= 0.93 is likely overestimated and P(mi > 5)= 0 is underestimated, and
from this parameterization, the expected rate of barcode multiplets is 15.8%. Here,
we denote the set of values mi as M (of length n). To account for k clonotypes with
exactly one barcode that could only be generated from a barcode singlet, we define
a new set M′ such that M′ ∪ K=M where |K|= k and ∀mi∈ K, mi= 1. Thus, the
elements of M′ represent the barcode multiplicities for clonotypes annotated with
two or more cells.

To estimate the multiplet-adjusted cell number per clonotype, we iteratively
sample from the set M′ until we have observed sufficient barcode numbers to
explain the original clonotype abundances, akin to observing droplets with variable
barcode abundances. More precisely, for a given clonotype j comprised of cj
barcodes (from the raw CellRanger output), we seek to compute the multiplet-
adjusted number of cells c′j. To achieve this, we sample from M′ until the sum
meets or exceeds cj. c′j then is the number of draws corresponding to the number of
multiplet-aware droplets needed to explain the clonotype abundance and can be
interpreted as the number of cells present in the clone under the simulation setting.
As an example, suppose cj= 4, representing a clone of four barcodes. If we sample
a 4 or 5 from M′, then c′j= 1, meaning that one droplet explains the clone in this
scenario. Last, the new per-clonotype abundances in the library are then
represented by the union of K with the set of all cj. These multiplet-adjusted
abundances were computed over 100 iterations, and the numbers reported in the
main text represent the mean over these simulations. We note that an R script that
achieves this approach is available in the repository noted in Code availability.

We define the “clone false discovery rate” as the proportion of clonotypes with
at least two cells that then becomes explained by a barcode multiplet (i.e., c′j= 1; cj
> 1) under our simulation setting. The numbers reported in the main text represent
means for each of the BCR and TCR clones over the 100 simulations. Finally, we
note that while this simulation assumes that the multiplet rates inferred for
scATAC-seq are transferable to scRNA-seq, alternative approaches, such as
estimating the complex bead rate from scRNA-seq directly, are likely unreliable
without a sensitive multiplet detection approach as presented with bap. Ultimately,
our simulation results provide an anchor to interpret the potential shift in
clonotype abundance from the lens of our barcode multiplet artifact. However,
additional experiments and analytical tools are needed to accurately determine
clonotype abundance.

Determination of multiplet-driven clonotypes. In scATAC-seq data, barcode
multiplets were identified using our approach previously described. However, no
such approach exists for scRNA-seq. Thus, to identify potential multiplets, we
were required to consider potential multiplets defined only by barcode similarity,
which would be reflective of synthesis errors resulting in a bead with hetero-
geneous barcodes (Fig. 1a). To determine these potential multiplets, we con-
sidered all pairs of barcodes within an annotated clonotype and computed the
restricted longest common subsequence (rLCS) between them. Analysis of the
distribution of pairs (Supplementary Fig. 4a) within clonotype labels revealed
was used to identify the clones shown in Fig. 4. When computing a permuted
distribution (Supplementary Fig. 4a), labels of clonotypes were shuffled such that
random barcode pairs were considered.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The public 10× scATAC-seq datasets are available for download at https://
support.10xgenomics.com/single-cell-atac/datasets and the public NSCLC clontypes at
https://www.10xgenomics.com/solutions/vdj/. Sequencing data generated as part of this
work is available at the Gene Expression Omnibus under accession GSE143197. All other
data are available from the authors upon reasonable request. Source Data are available in
the Source Data file.

Code availability
Software associated with the barcode multiplet identification and merging algorithm is
available at https://github.com/caleblareau/bap. Code and data to reproduce the main
findings of this study are available at https://github.com/caleblareau/barcode-multiplets.

Received: 2 August 2019; Accepted: 23 January 2020;

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14667-5

8 NATURE COMMUNICATIONS |          (2020) 11:866 | https://doi.org/10.1038/s41467-020-14667-5 | www.nature.com/naturecommunications

https://support.10xgenomics.com/single-cell-atac/datasets
https://support.10xgenomics.com/single-cell-atac/datasets
https://www.10xgenomics.com/solutions/vdj/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE143197
https://github.com/caleblareau/bap
https://github.com/caleblareau/barcode-multiplets
www.nature.com/naturecommunications


References
1. Klein, A. M. & Macosko, E. InDrops and Drop-seq technologies for single-cell

sequencing. Lab Chip 17, 2540–2541 (2017).
2. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of

single cells. Nat. Commun. 8, 14049 (2017).
3. Lareau, C. A. et al. Droplet-based combinatorial indexing for massive-scale

single-cell chromatin accessibility. Nat. Biotechnol. 8, 916–924 (2019).
4. Satpathy, A. T., Granja, J. M., Yost, K. E., Qi, Y. & Meschi, F. Massively

parallel single-cell chromatin landscapes of human immune cell development
and intratumoral T cell exhaustion. Nat. Biotechnol. 8, 925–936 (2019).

5. Abate, A. R., Chen, C.-H., Agresti, J. J. & Weitz, D. A. Beating Poisson
encapsulation statistics using close-packed ordering. Lab Chip 9, 2628–2631
(2009).

6. Lareau, C. A., Ma, S., Duarte, F. M. & Buenrostro, J. D. Inference and effects of
barcode multiplets in droplet-based single-cell assays. BioRxiv https://doi.org/
10.1101/824003 (2019).

7. Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-
cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866 (2016).

8. Simone, M. D., De Simone, M., Rossetti, G. & Pagani, M. Single cell T cell
receptor sequencing: techniques and future challenges. Front. Immunol. 9,
1638 (2018).

9. Haque, A., Engel, J., Teichmann, S. A. & Lönnberg, T. A practical guide to
single-cell RNA-sequencing for biomedical research and clinical applications.
Genome Med. 9, 75 (2017).

10. Cui, J.-H. et al. TCR repertoire as a novel indicator for immune monitoring
and prognosis assessment of patients with cervical cancer. Front. Immunol. 9,
2729 (2018).

11. Stoeckius, M. et al. Cell hashing with barcoded antibodies enables
multiplexing and doublet detection for single cell genomics. Genome Biol. 19,
224 (2018).

12. Raj, B. et al. Simultaneous single-cell profiling of lineages and cell types in the
vertebrate brain. Nat. Biotechnol. 36, 442–450 (2018).

13. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification
of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291.e9
(2019).

14. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet
detection in single-cell RNA sequencing data using artificial nearest neighbors.
Cell Syst. 8, 329–337 (2019).

15. Lun, A. T. L. et al. EmptyDrops: distinguishing cells from empty droplets in
droplet-based single-cell RNA sequencing data. Genome Biol. 20, 63 (2019).

16. Bell, A. D. et al. Insights about variation in meiosis from 31,228 human sperm
genomes. BioRxiv https://doi.org/10.1101/625202 (2019).

Acknowledgements
We thank J. Ulirsch and members of the Buenrostro lab for insightful comments.
We are grateful to A. Labade and L. Ludwig for technical assistance. We thank

Z. Burkett and R. Lebowsky of Bio-Rad for helpful conversations. We acknowledge a
useful blog post from L. Pachter discussing sub-Poisson bead loading. J.D.B., C.A.L.,
S.M., and F.M.D. acknowledge support by the Allen Distinguished Investigator Program
through the Paul G. Allen Frontiers Group. This work was further supported by the
Chan Zuckerberg Initiative. C.A.L. is supported by F31 CA232670 from the NIH.

Author contributions
C.A.L. and J.D.B. conceived and designed the study. C.A.L. implemented the software
and performed analyses. S.M. and F.M.D. performed experiments and aided analyses. J.
D.B. supervised the work. All authors participated in the writing of the manuscript.

Competing interests
The authors declare the following competing interests: J.D.B. holds patents related to
ATAC-seq. All other authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-14667-5.

Correspondence and requests for materials should be addressed to C.A.L. or J.D.B.

Peer review information Nature Communications thanks Sarah Teichmann and the
other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14667-5 ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:866 | https://doi.org/10.1038/s41467-020-14667-5 |www.nature.com/naturecommunications 9

https://doi.org/10.1101/824003
https://doi.org/10.1101/824003
https://doi.org/10.1101/625202
https://doi.org/10.1038/s41467-020-14667-5
https://doi.org/10.1038/s41467-020-14667-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Inference and effects of barcode multiplets in�droplet-based single-cell assays
	Results
	Bead multiplets quantified through imaging
	Identifying barcode multiplets in 10× scATAC-seq with bap
	Contributions of types of barcode multiplets
	External corroboration of barcode multiplets
	Confounding of clonal lymphocytes due to barcode multiplets

	Discussion
	Methods
	Loading and visualizing bead loading in droplets
	Profiling PBMCs using 10× scATAC-seq
	Data preprocessing
	Processing 10× scATAC-seq data with bap
	In silico mixing experiment
	Assigning bead barcodes to multiplets
	Classifying and quantifying complex beads
	Chi-squared test for cluster/multiplet
	Evaluation of bap with variable input barcodes
	Enrichment for barcode multiplet pairs in the same cluster
	Downsampling analyses
	Comparison with 10× solution
	Estimation of multiplet-adjust BCR/TCR clonotype abundances
	Determination of multiplet-driven clonotypes
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




