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Single-cell multi-omics of mitochondrial 
DNA disorders reveals dynamics of purifying 
selection across human immune cells
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Pathogenic mutations in mitochondrial DNA (mtDNA) compromise cellular 
metabolism, contributing to cellular heterogeneity and disease. Diverse 
mutations are associated with diverse clinical phenotypes, suggesting 
distinct organ- and cell-type-specific metabolic vulnerabilities. Here 
we establish a multi-omics approach to quantify deletions in mtDNA 
alongside cell state features in single cells derived from six patients 
across the phenotypic spectrum of single large-scale mtDNA deletions 
(SLSMDs). By profiling 206,663 cells, we reveal the dynamics of pathogenic 
mtDNA deletion heteroplasmy consistent with purifying selection and 
distinct metabolic vulnerabilities across T-cell states in vivo and validate 
these observations in vitro. By extending analyses to hematopoietic and 
erythroid progenitors, we reveal mtDNA dynamics and cell-type-specific 
gene regulatory adaptations, demonstrating the context-dependence 
of perturbing mitochondrial genomic integrity. Collectively, we report 
pathogenic mtDNA heteroplasmy dynamics of individual blood and immune 
cells across lineages, demonstrating the power of single-cell multi-omics for 
revealing fundamental properties of mitochondrial genetics.

Mitochondria are complex organelles essential for metabolism and 
carry their own genome. Characterized by a high mutation rate, cell 
cycle-independent (relaxed) replication and variable copy number, 
mitochondrial DNA (mtDNA) possesses distinct genetic properties 
compared to nuclear DNA. In human cells, mitochondrial genomes are 
present in high copy numbers (100–1,000s), and mutations in mtDNA 

may vary in their level of heteroplasmy (proportion of mitochondrial 
genomes carrying a specific variant) in and across individual cells1,2. 
Notably, mtDNA-related disorders affect approximately 1 in 4,300 
individuals, many of which present with heterogeneous phenotypes, 
cell-type-specific defects and variable severity that may correlate with 
heteroplasmy of pathogenic mutations3. Similarly, the age-related 
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of cells from a mtscATAC-seq library. Thus, we developed a compu-
tational approach, mgatk-del, that uses aligned mtDNA sequencing 
reads that result from the CellRanger-ATAC preprocessing (Extended 
Data Fig. 1a). To achieve precise heteroplasmy estimation, we reasoned 
that base-resolution breakpoints in sequencing reads (encoded as 
soft-clips in the alignments) could be used to infer deletion junctions, 
which could be corroborated with per-read secondary alignments 
reported from BWA (Extended Data Fig. 1b,c). Deletion heteroplasmy 
could then be estimated as a ratio of reads supporting or contradicting 
a deleted junction sequence. To benchmark this approach, we evalu-
ated heteroplasmy estimation as a function of two hyperparameters 
using grid-searching simulated synthetic data (Extended Data Fig. 1c–f; 
Methods), yielding a method to accurately estimate heteroplasmy for 
each deletion.

Having established the computational approach, we quantified 
single-cell heteroplasmy for all three investigated pathogenic dele-
tions. Following donor demultiplexing, our clipped-read heteroplasmy 
estimates revealed variation in deletion heteroplasmy across the popu-
lation of cells (Fig. 1d), consistent with our previous observations of 
heterogeneity in cells derived from patients with mitochondriopathy 
caused by SNVs9,10 and exceeding the variation that could be explained 
from variable single-cell coverages under a null model (Extended Data 
Fig. 1g). Furthermore, nonzero heteroplasmy was highly specific for 
each PS cell line. Conversely, a coverage-based estimate of hetero-
plasmy (ratios of read depths within and outside the deleted region) 
showed greater nonspecific heteroplasmy at deletions discordant from 
the originating PS patient cells although both methods were overall 
concordant (Fig. 1e and Extended Data Fig. 1h–j; Methods). Together, 
our analyses demonstrate the ability of mgatk-del to map mtDNA 
deletions at base-pair resolution and quantify their heteroplasmy in 
single cells.

Purifying selection of mtDNA deletions in T cells
We then used mtscATAC-seq and mgatk-del to analyze mtDNA dele-
tions and heteroplasmy in primary patient cells. We obtained periph-
eral blood mononuclear cells (PBMCs) from three cases, including a 
7-year-old male with PS/KSS (‘PT1’), a 4-year-old female with PS (‘PT2’) 
and a 4-year-old male with PS and chromosomal 7q deletion (del7q) 
myelodysplastic syndrome (MDS, ‘PT3’). Each patient presented with a 
distinct SLSMD (Supplementary Table 1). PBMCs from all three patients 
were profiled using both mtscATAC-seq and 10× 3′ scRNA-seq to quan-
tify heterogeneity of mtDNA deletion heteroplasmy, chromatin acces-
sibility and transcriptional profiles (Fig. 2a). Application of mgatk-del 
revealed the base-resolution breakpoints corresponding to the deleted 
regions for each patient (without prior knowledge) and enabled the 
quantification of deletion heteroplasmy in single cells (Fig. 2b and 
Extended Data Fig. 2a). Among cells passing quality control (n = 15,064; 
mean 81.5× coverage), we observed marked variation of heteroplasmy 
in PBMCs, including hundreds of cells that had no detectable mtDNA 
deletion heteroplasmy (Fig. 2c).

As mtDNA genotypes are paired with single-cell chromatin acces-
sibility data, we sought to examine heteroplasmy variability and 
dynamics as a function of cell state. We performed a dictionary-based 
reference mapping of all cells to a previously annotated atlas of PBMCs 
(Fig. 2d; Methods)16. Notably, our analyses revealed clusters of T cells 
consistently depleted of mutant mtDNA relative to other immune or 
T-cell populations across all three donors, including effector/mem-
ory CD8 T cells (CD8.TEM) and mucosal-associated invariant T cells 
(MAIT) that could not be explained by variation in sequencing coverage  
(Fig. 2e-h, Extended Data Fig. 2b,c and Supplementary Table 2). These 
results are reminiscent of the previously described purifying selection 
of pathogenic mtDNA in T cells from patients with MELAS10 but add 
nuance by revealing multiple subpopulations of affected T cells. To 
corroborate this inference, we performed the same dictionary-based 
reference annotation for MELAS cells. Indeed, MAIT and CD8.TEM 

accumulation of somatically mutated mtDNA molecules in human 
cells and tissues may contribute to a variety of complex human  
diseases1,2,4,5. While germline single nucleotide variants (SNV) have been 
studied in human tissues, the effects of a major class of mutations and 
large mtDNA deletions have been examined to a lesser extent. Notably, 
single large-scale mtDNA deletions (SLSMDs) have been implicated 
in a continuum of congenital disorders, including Pearson syndrome 
(PS), Kearns–Sayre syndrome (KSS) and chronic progressive external 
ophthalmoplegia (CPEO)6.

Recently, we and others have demonstrated the utility of single-cell 
genomics for mtDNA genotyping in combination with cellular state 
characterization7,8. The droplet-based mitochondrial single-cell assay 
for transposase accessible chromatin by sequencing (mtscATAC-seq) 
technique enables the scalable, concomitant profiling of accessible 
chromatin and mtDNA9,10. Further innovations enable additional 
single-cell measurements alongside chromatin accessibility and 
mtDNA genotyping, including antibody-based quantification of pro-
tein expression (ATAC with selected antigen profiling by sequencing 
(ASAP-seq)) and gene expression (DOGMA-seq)11. The application of 
these approaches has revealed the high prevalence of somatic mtDNA 
mutations, many of which are stably propagated and facilitate clonal/
lineage tracing studies7–9,11. Moreover, these assays facilitate the study 
of pathogenic mtDNA variants associated with human disease. In 
patients with mitochondrial encephalomyopathy lactic acidosis and 
stroke-like episodes (MELAS) caused by the m.3243A > G mutation, we 
demonstrated a previously unappreciated purifying selection against 
pathogenic mtDNA in particular T cells, suggesting a link between 
heteroplasmy and cell state10.

Here we use a series of multi-omics single-cell approaches and 
introduce mgatk-del, a computational approach to assess hetero-
plasmy of mtDNA deletions with high sensitivity and specificity, in 
single cells from patients with SLSMD. By examining primary hemat-
opoietic cells in the peripheral blood and the bone marrow (n = 206,663 
primary cell profiles), we reveal the distribution of pathogenic mtDNA 
deletions in hematopoietic lineages and its depletion or persistence 
in specific cell types indicative of distinct metabolic vulnerabilities. 
We identify context-dependent alterations in cell state as assessed by 
transcriptional, accessible chromatin, and protein expression pro-
filing. Collectively, this study underscores the power of single-cell 
multi-omics to interrogate congenital mitochondriopathies, revealing 
metabolic requirements, vulnerabilities and cell-type-specific means 
of compensation.

Results
Single-cell quantification of mtDNA deletions
We have previously demonstrated that mtscATAC-seq yields relatively 
uniform coverage across the mitochondrial genome and can robustly 
quantify pathogenic SNVs in single cells9,10. Here we sought to assess 
this approach for detecting and quantifying large mtDNA deletions that 
underlie PS and related SLSMD. These large mtDNA deletions have been 
hypothesized to occur due to strand displacement errors in mtDNA rep-
lication between the heavy (OH) and light (OL) origins of replication and 
occur very early in development or oogenesis (Fig. 1a)12,13. To examine 
these deletions in single-cell data, we conducted mixing experiments by 
pooling in vitro cultured fibroblasts derived from two healthy donors 
and three patients with PS carrying three distinct mtDNA deletions for 
mtscATAC-seq (Fig. 1b). Following sequencing, cells from each donor 
were demultiplexed using private SNVs (Fig. 1b; Methods). Pseudob-
ulk summaries of high-quality cells per donor revealed distinct dips 
in coverage along the mtDNA genome corresponding to the specific 
deletions at variable levels of heteroplasmy (Fig. 1c).

Although the software has been developed to analyze mtDNA dele-
tions in bulk sequencing data14,15, these workflows do not ensure valid 
estimation of deletion heteroplasmy, particularly in lower-coverage 
libraries such as individual cells, and do not readily scale to thousands 
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cells displayed reduced heteroplasmy of mutant mtDNA (Fig. 2i,j and 
Extended Data Fig. 2d,e). Overall, our results suggest that MAIT and 
CD8.TEM cells are both under specific selection pressures that are con-
served between different classes of pathogenic mtDNA genotypes and 
diagnoses, thus resulting in a refined model of the degree of purifying 
selection in immune cells in the context of congenital mitochondrial 
disease (Fig. 2k).

In vitro T-cell models corroborate purifying selection
We sought to investigate pathogenic mtDNA dynamics during in vitro 
activation and differentiation of T cells from PS donors (Fig. 3a). We 
observed retention of naive-like marker CD45RA, reduced expansion of 
T cells, particularly CD8+ T cells, relative to healthy controls, consistent 

with the stronger selective pressure of CD8.TEM cells observed in vivo 
(Fig. 3b–d and Extended Data Fig. 3a). Conversely, parallel cultures 
of healthy adult and pediatric T cells did not show impairment either 
in total proliferation or in the ratio of CD8+:CD4+ T cells (Fig. 3d and 
Extended Data Fig. 3b). To link cell surface markers to pathogenic 
mtDNA heteroplasmy, we performed proteogenomic characteriza-
tion via ASAP-seq at days 14 and 21 of culture, observing the percent-
age of cells with zero heteroplasmy increasing to 75%, compared to 
23% in ex vivo PBMCs (Fig. 3e). Unsupervised dimensionality reduc-
tion and cell state annotation revealed heteroplasmy to be mostly 
restricted to naive-like CD45RA+ and Th17-like T cells (Fig. 3f–h and 
Extended Data Fig. 3c). In contrast, CD4+ and CD8+ effector-like T cells 
(marked by CD45RO+) had mostly selected against pathogenic mtDNA, 
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Fig. 1 | Identification and quantification of heteroplasmic pathogenic mtDNA 
deletions in single cells. a, Schematic of mtDNA in humans with PS-related 
deletions relevant for the cell lines examined in b. OH and OL represent the heavy 
and light chain origins of replication, respectively. PS1, PS2 and PS3 represent 
three different mtDNA deletions identified in three independent donors from 
which the cell lines were derived. Size and location of deletions are indicated. 
b, Summary of cell line mixing experiment and demultiplexing using mtDNA 
haplotype-derived SNVs in single cells. Heatmap depicts homoplasmic SNVs that 

facilitate the separation of cells from distinct donors. c, Mean coverage plots per 
cell across the mitochondrial genome for the demultiplexed donor cell identities. 
Drops in the coverage are indicative of large mtDNA deletions. d,e, Estimates of 
single-cell heteroplasmy using (d) clipped-read enumeration and (e) coverage-
based approaches. Red dots represent false-positive heteroplasmy assessments 
from the deletion/donor pair (‘discordant’). Each dot represents estimated 
heteroplasmy from a single cell for each respective deletion. C1, C2 = Control 1 
and Control 2 as in b and c.
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suggesting that mitochondrial genetic integrity is essential to acquire 
these T-cell states. Identical observations were made upon extension 
of culture to day 21, which further revealed clonality of expanded T-cell 

populations as indicated by somatic mtDNA mutations (for example, 
m.12631T>C and m.4225A>G; Extended Data Fig. 3d–h). Culture of 
T cells from patient with PS (PT1) replicated these findings, including 
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blood MAIT and CD8 T cells in PS. a, Schematic of single-cell genomics data 
generation. PBMCs from three patients (PT1, PT2 and PT3) with PS were collected 
and processed via scRNA-seq and mtscATAC-seq. b, Depiction of mtDNA 
deletions from three investigated patients with PS as determined by mgatk-
del. Location and size of deletions are indicated. c, Violin plots of single-cell 
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indicated in b. Median heteroplasmy (%) and profiled cell numbers are indicated 
for each patient. d, Reduced dimensionality projection and joint clustering of 
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limited expansion, reduced CD8+:CD4+ ratio and depletion of het-
eroplasmy specifically in effector-like CD8+ T cells (Extended Data  
Fig. 3i–k). Finally, we hypothesized that the fitness deficit of T cells 
in vitro may be mitigated through the supplementation of pyruvate (to 
accept electrons instead of oxygen) and uridine (to enable pyrimidine 
synthesis in the absence of DHODH activity) in the culture media17,18. 
To explore this, we repeated the T-cell expansion cultures with and 
without pyruvate and uridine (P&U) and assessed proliferation and 
viability via flow cytometry (Fig. 3i; Methods). Indeed, after 4 d of cul-
ture, we observed an increase in viability and proliferation (Fig. 3j,k), 

suggesting that restoring OXPHOS function may partially restore T-cell 
function. In total, our in vivo and in vitro results suggest that pathogenic 
mtDNA deletions compromise the proliferation and differentiation 
of naive to effector T-cell states, with a particular vulnerability of the 
CD8.TEM lineage.

Deletion heteroplasmy in adults with SLSMD
While PS may be lethal early in life, individuals with CPEO and KSS, 
other diseases caused by SLSMD, more commonly live into adulthood. 
To study the dynamics of purifying selection of SLSMD in the immune 
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system after decades of life, we profiled three donors aged 23–39 years 
with mtscATAC-seq (Fig. 4a). While an initial examination of mtDNA 
coverage did not reveal obvious deletions (Fig. 4b), application of 
clipped-read analysis via mgatk-del revealed specific large deletions 
between 4,965 bp and 7,514 bp in all three donors (Fig. 4c,d), includ-
ing deletions with 0.0060% pseudobulk heteroplasmy. Here all reads 
supporting the deletion came from the same cell (68.8% heteroplasmy; 
11 unique reads supporting the deletion), whereas other software19,20 
failed to uncover this rare event. For all three patients, we observed that 
these heteroplasmic cells were enriched in the CD4+ central memory 
and regulatory T-cell compartments (53.0% of nonzero heteroplasmy 
cells versus 25.0% of all cells; Fisher’s exact P = 9.9 × 10−7; Fig. 4e–g). 
Thus, analysis of adult patients with SLSMD provides a lens into the 
lifetime dynamics of pathogenic mtDNA deletions, indicating CD8.
TEM and MAIT cells are initially most sensitive to the selection, which 
over time extends to CD34+ hematopoietic stem and progenitor cells 
(HSPCs) and all descending cells, leaving long-lived CD4+ cells with 
residual heteroplasmy (Fig. 4h).

Identification of mosaic del7q cells
For PT3 with PS, the clinical evaluation revealed a mosaic del7q, a chro-
mosomal abnormality consistent with the development of MDS on the 
backdrop of a congenital bone marrow failure syndrome (Fig. 5a)21. 
Notably, the acquisition of monosomy 7 has recently been reported in 
a case of PS22. We applied mtscATAC-seq to PT3 bone marrow mononu-
clear cells (BMMNCs) with and without CD34+ enrichment (Extended 
Data Fig. 4a) to analyze the association of mtDNA deletion hetero-
plasmy and the nuclear del7q abnormality at single-cell resolution.  

To assess the distribution of del7q cells, we first examined the abun-
dance of fragments overlapping the deleted region, which revealed a 
clear multimodal distribution, that could be classified using a Gauss-
ian mixture model (Fig. 5b and Extended Data Fig. 4b–d; Methods). As 
del7q was most abundant in CD34+ HSPCs, we examined the association 
between del7q and mtDNA heteroplasmy in these cells. Notably, we 
observed a striking association where del7q cells had substantially 
higher levels of mutant mtDNA, suggesting the acquisition of del7q 
in HSPCs with the most compromised mitochondrial function (Fig. 
5c and Extended Data Fig. 4e).

To refine our analysis, we projected CD34+ PT3 data onto a healthy 
donor reference of sorted CD34+ cells to define the continuous dif-
ferentiation trajectory of these progenitors via patterns of chromatin 
accessibility (Fig. 5d; Methods)23,24. Relative to healthy control cells, 
PT3 displayed a stark depletion of cells annotated as hematopoietic 
stem cells (HSCs) and multipotent progenitors (MPPs) as well as an 
enrichment of granulocyte–monocyte progenitors (GMP) and mono-
cytes in peripheral blood, resulting in a markedly different estimated 
composition of the entire HSPC compartment (Fig. 5e and Extended 
Data Fig. 4f–h). We observed the pronounced presence of del7q in PT3 
GMPs and multipotent erythroid progenitors (MEP), consistent with 
the MDS phenotype (Fig. 5f). Notably, the PT3 common lymphoid pro-
genitor (CLP) population was mostly wild-type for chr7 and depleted 
of pathogenic mtDNA (Fig. 5g,h). Together, these analyses reveal the 
complexity of lineage commitment and differentiation in the pres-
ence of pathogenic mtDNA deletion heteroplasmy and the onset of 
MDS within the early hematopoietic progenitor compartment of the  
patient with PS.
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Purifying selection in hematopoietic development
To further investigate the interplay of del7q and mtDNA deletion 
heteroplasmy dynamics across the hematopoietic compartment, we 
applied ASAP-seq to PT3-derived BMMNCs, including the profiling of 
242 surface antigens, yielding 20,580 high-quality cells with quantifica-
tion across four distinct modalities per cell (chromatin accessibility, 
nuclear chromosomal aberrations, mtDNA genotypes and surface 
protein abundance; Fig. 6a). We revealed variation in heteroplasmy 
across hematopoietic lineages with the proteogenomic measure-
ments facilitating more highly resolved inferences of cell type/state  
(Fig. 6b–d and Extended Data Fig. 5a). Furthermore, our mixture model 
approach identified del7q to be primarily in myeloid and erythroid 
cells and largely absent in lymphocytes (Fig. 6e).

We performed integrative analyses to determine surface markers 
overexpressed on del7q compared to chr7 wild-type monocytic and 
erythroid cells (Fig. 6f). For both comparisons, we observed an enrich-
ment of surface proteins CD15, CD56, CD64 and HLA-DR, all markers 
that have previously been reported to be upregulated in patients with 
MDS25,26. Unlike CD56, other markers of NK cells such as CD335 were not 
expressed on MDS-associated cells, but were present exclusively on NK 
cells (Extended Data Fig. 5b). In addition, we corroborated our obser-
vation of the depletion of phenotypic HSCs as revealed in the CD34+ 
projection analysis (Fig. 5d,e). We compared the distribution of HSPC 
populations and protein markers in PS to healthy donor bone marrow 
ASAP-seq data11 and were unable to detect CD34+c-Kit+CD71 cells in PT3 
despite the clear presence of these cells in healthy BMMNCs (Extended 

Data Fig. 5c,d). Noting that HSCs do not express CD71, our integrated 
analysis confirms the apparent relative depletion of phenotypic HSCs 
in PT3, which may further present a consequence of the pathogenic 
mtDNA deletion and/or the MDS phenotype.

Then, we investigated two subpopulations of CD4+ and CD8+ 
T cells that were depleted of pathogenic mtDNA heteroplasmy. Dif-
ferential gene accessibility revealed markers associated with recent 
thymic emigrants (RTEs)27, including ADAM23, IKZF2, TOX and 
ZNF462 (Fig. 6g–i and Extended Data Fig. 5e). Differential protein 
expression of the same populations showed a relative enrichment 
of CD21 and CD35 (Fig. 6j), which are both upregulated on RTEs27. 
Notably, we verified the presence of RTE-heteroplasmy-depleted 
cells in peripheral blood by reclustering PBMCs from PT3, which 
did not separate RTEs in our previous reference projection analy-
ses (Fig. 2) and confirmed the purifying selection of CD8.TEM cells 
in the bone marrow (Extended Data Fig. 5f–j). Overall, integrating 
our observations of populations depleted of pathogenic mtDNA 
deletions— including CLPs in the CD34+ compartment (Fig. 5d,g),  
subpopulations of CD4+/CD8+ RTEs and CD8.TEM cells in multiple 
hematopoietic compartments— suggests multiple distinct modes of 
purifying selection at distinct stages of lymphopoiesis (Fig. 6k).

As we have previously demonstrated somatic mtDNA SNVs to 
identify clonal subsets in hematopoietic populations of adults7,9, we 
sought to determine the prevalence of these mutations at 4 years of 
age. Application of mgatk revealed 69 somatic mtDNA SNVs that were 
enriched in expected nucleotide substitution patterns9,11, located 
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largely outside of the mtDNA deleted region and present in both del7q 
and wild-type cells (Extended Data Fig. 5k–m). For example, variants 
m.1719G>A and m.7836T>C refined clones within the del7q compart-
ment, whereas variants m.12242A>G, m.14476G>A, m.5557T>A and 
m.13970G>A were predominantly found in cells with wild-type chr7 
(Fig. 6l,m and Extended Data Fig. 5n). Notably, the m.5557T>A variant 
was observed in both CD4+ and CD8+ RTEs and in the myeloid com-
partment, suggesting that the HSPC carrying this variant is capable of 
multi-lineage output, whereas variants m.12242A>G and m.14476G>A 
were only identified in lymphoid cells. Together, our analyses indicate 
that the utility of mtDNA-based lineage tracing extends to pediatric 
patients and clonal myeloid disorders.

Selection dynamics in erythropoiesis
A hallmark feature of PS is severe macrocytic sideroblastic anemia, 
characterized by erythroblasts accumulating iron deposits around their 
mitochondria, which is frequently detectable in the neonatal period 
and often in the context of evolution to pancytopenia (a significant 
reduction in the number of all blood cells)28–30. Given this phenotype, 
we sought to understand the selection dynamics and altered gene 
expression programs underlying defective erythropoiesis. To real-
ize this, we performed pseudotime trajectory inference for 1,511 cells 
from the BMMNC ASAP-seq data along the erythroid pseudotime axis  
(Fig. 7a; Methods). Our trajectory corroborated known cell state 
markers associated with early-to-late erythroid transitions from both 
surface protein and chromatin accessibility, including the GATA1 and 
TMCC2 loci (Fig. 7b)31. Along this axis, the proportion of cells harbor-
ing del7q and mtDNA deletion heteroplasmy was greatly reduced  
(Fig. 7c,d), suggesting selection during late erythropoiesis. Differentiat-
ing erythroid cells also showed high OXPHOS module scores relative to 
other BMMNCs, indicative of a high metabolic demand (Extended Data  
Fig. 6a). These findings support a model of the high vulnerability of 
the erythroid lineage and its altered output in PS, analogous to our 
observations of increased OXPHOS demand and resulting selection 
during T-cell proliferation and differentiation.

To further corroborate the observed in vivo phenotypes, we 
differentiated PT3 BMMNCs and healthy control cells in vitro in the 
presence of erythropoietin (EPO), collecting cells at days 6 and 12 
of culture, before processing with scRNA-seq and mtscATAC-seq  
(Fig. 7e). Phenotypically, PS cells displayed poor proliferation and clear 
signs of impairment during erythroid differentiation as assessed by 
surface markers and cytology (Extended Data Fig. 6b–d). Assessment 
of mtDNA deletion heteroplasmy and del7q status revealed a relative 
increase in the proportion of del7q cells at days 6 and 12, with no nota-
ble selection against mtDNA heteroplasmy (Fig. 7c–h). These results, 
however, may reflect a low abundance of late-stage erythroblasts at 
the sampled time points.

Finally, we investigated the altered gene expression programs that 
may underlie the anemic phenotype in PS. We performed unsupervised 
dimension reduction of 28,783 high-quality cells, which revealed a 

trajectory of erythroid differentiation (Fig. 7i–k and Extended Data  
Fig. 6e; Methods). Differential gene expression and pathway enrich-
ment analyses comparing erythroid cells from the PS donor to the 
healthy control were robust despite MDS-associated cells, suggest-
ing alterations to be primarily attributable to the mtDNA deletion 
(Extended Data Fig. 6f). Most notably, we observed genes of the 
serine and glycine biosynthesis pathway, including PHGDH, PSAT1, 
PSPH and SHMT2 to be upregulated in PS erythroblasts (Fig. 7l,m). 
Serine metabolism, reported to be altered in response to mito-
chondrial dysfunction, may aid in maintaining cellular one-carbon 
availability to provide essential precursors for synthesizing urines, 
phospholipids and the antioxidant glutathione (GSH), a scavenger 
of reactive oxygen species (ROS)32–34. Conversely, the heme biosyn-
thesis pathway, including genes UROS, CPOX, FECH, UROD, HMBS 
and PPOX, and cholesterol biosynthesis pathways were substantially 
downregulated in PS (Fig. 7l,m and Extended Data Fig. 6g–i). In total, 
our multi-omic analyses nominate numerous perturbed genes and 
pathways, the deregulation of which likely contributes to the char-
acteristic anemia in PS (Fig. 7n), and suggests avenues for additional  
functional follow-up.

Discussion
Multi-omic approaches provide complementary and orthogonal meas-
urements to more holistically characterize the cellular circuits under-
lying perturbed cellular phenotypes in disease35,36. Here we charted 
genomic alterations across five modalities (that is, transcriptome, 
accessible chromatin, cell-surface markers, mtDNA genotypes and 
nuclear chromosomal aberrations) resulting from large mtDNA dele-
tions across ~200,000 primary patient cells. In particular, we demon-
strate how mgatk-del in conjunction with mtscATAC-seq9,10, ASAP-seq11 
or DOGMA-seq (Supplementary Note)11 enables the sensitive identi-
fication and quantification of large mtDNA deletions in single cells, 
alongside concomitant readouts of cell state. MtDNA copy number 
and heteroplasmy can be present at highly variable levels across a 
population of cells and cell states, thereby emphasizing the utility of 
our multi-omic advances. Our approach will aid in studying the phe-
notypic effects of somatically arising mtDNA mutations, which may be 
selected against in individuals with cancer, aging-related degenerative 
diseases and healthy tissues1,2,37–39. We note reports of the accumulation 
of mtDNA deletions in postmitotic cells, including in single muscle  
fibers40 and neurons in Parkinson’s disease41, whereas SNVs appear 
more common in mitotic cells42, indicative of distinct evolutionary 
pressures underlying these two classes of mutations. Future studies at 
the single mitochondrion level43 or that study the full mtDNA or RNA 
molecule via long-read sequencing technologies39 will complement 
our cell state inferences of heteroplasmy.

By studying pathogenic mtDNA deletion dynamics in vivo and 
in vitro, we observed multiple instances of purifying selection, includ-
ing in MAIT, CD8.TEM and RTEs, indicative of metabolic vulnerabilities 
at distinct stages of T-cell maturation. Notably, we observed that CD8.

Fig. 6 | Multimodal characterization of PS BMMNCs with ASAP-seq. a, 
Schematic of ASAP-seq experiment from PS BMMNCs derived from PT3 with 
MDS. b, Dimensionality reduction and embedding for high-quality BMMNCs 
with heteroplasmy colored. c, The same embedding as in b is annotated by 
major cell type clusters. d, Selected lineage-defining surface protein markers are 
shown on the reduced dimension space as in b and c. e, Projection of annotated 
del7q status onto the UMAP space as in b and c. f, Volcano plots of differentially 
expressed protein surface markers inferred from antibody barcodes for del7q 
versus wild-type cells annotated as erythroid or monocytic from c. Markers with 
distinct colors were significantly upregulated in both comparisons (logFC > 0.1 
and Wilcoxon test with Bonferroni correction P < 0.01). g, Schematic illustrating 
CD4+ and CD8+ T-cell clusters used for differential gene score expression (DE) 
analyses to identify markers distinguishing low-heteroplasmy cell populations. 
h, Volcano plot showing differential gene activity scores for comparison of CD4+ 

T-cell clusters as illustrated in g. Genes in red (ZNF462, ADAM23, IKZF2 and TOX) 
indicate marker genes for RTEs. i, Projected gene scores for indicated marker 
genes onto UMAP space as highlighted in g. j, Differentially expressed proteins 
for the comparisons of CD4+ and CD8+ T-cell populations as illustrated in g. 
CD21 and CD35, shown in red, are known surface markers for RTEs. A total of 
three markers (CD21, CD35 and CD45RA) were significantly upregulated in both 
CD4+ and CD8 T+ RTEs (logFC > 0.1 and Wilcoxon test with Bonferroni correction 
P < 0.01). k, Schematic of multifaceted clonal output and purifying selection 
in PT3 with PS and MDS. Major cell transitions are depicted as a function of 
7qel status and mtDNA deletion heteroplasmy. l, Projection of somatic mtDNA 
mutations m.1719G>A and m.7836T>C enriched in cells carrying the del7q. m, 
Projection of somatic mtDNA mutations m.13970G>A and m.5557T>A enriched in 
wild-type cells (diploid for chr 7), including in RTEs.
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TEMs are more sensitive to selection compared to their effector CD4.
TCM counterparts, corroborating distinct mitochondrial/metabolic 
demand following TCR-specific activation and conversion of CD8+ 
T cells to effector/memory cells44. Such a model is consistent with 
mitochondrial respiratory capacity to be a critical regulator of CD8 
memory T-cell development45. Furthermore, our approach also allowed 
the characterization of rare populations of cells, including MAIT, 
which experienced similar strong selection pressures to CD8.TEM, 

presumably requiring efficient mitochondrial capacity for cellular dif-
ferentiation and function46,47. Together, these results provide insights 
into our emerging understanding of the effects of pathogenic mtDNA 
on the development of T-cell states and their life-long dynamics across 
the hematopoietic compartment (Fig. 4). Furthermore, through a rare  
case of PS with MDS, we show the del7q alteration to be restricted 
to cells carrying the mtDNA deletion, indicating that it arose in a 
mitochondrially/metabolically dysfunctional background and was 
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coincidental with an expanded myeloid pool and reduction of the 
phenotypic HSC pool. While profiling additional patients is required 
to verify selection dynamics in HSPCs, our observation of purifying 

selection in progenitor cells in the bone marrow compartment explains 
pan-lineage purifying selection across all mitochondriopathies  
studied herein.
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Fig. 7 | Altered erythroid differentiation and selection in PS. a, Erythroid 
pseudotime trajectory of in vivo ASAP-seq data. The color bar represents the 
annotated pseudotime for 1,511 cells, with the arrow orienting the inferred 
trajectory for the embedding in Fig. 6c. b, Summary of cell state features 
along erythroid pseudotime axis. c, Abundance of del7q cells along erythroid 
pseudotime axis. The mean of each pseudotime bin is noted ±s.e.m.  
d, Distribution of heteroplasmy across erythroid pseudotime bins. Each cell  
is plotted in color matching (a) with the per-bin median noted in black.  
e, Schematic of experimental design. BMMNCs were derived from PT3 with 
PS/MDS and healthy controls and differentiated toward erythroblasts in vitro. 
Patient and healthy cells were harvested on day 6 and day 12 and jointly processed 
via mtscATAC-seq or scRNA-seq. f, Stacked bar graph of cells annotated as wild-
type or del7q across indicated cell populations, including at day 6 and day 12 
of in vitro culture. g, Same as f but showing the proportion of cells with exactly 
0% and >0% heteroplasmy of the mtDNA deletion as determined by mgatk-del. 

h, Cumulative distribution graphs of mtDNA deletion heteroplasmy across 
the indicated four cell populations. i–k, UMAP embedding of 28,783 high-
quality cells profiled via scRNA-seq annotated by (i) day of culture collected, 
(j) healthy or disease state and (k) annotated cell state/cluster. l, Rank-sorted 
differentially expressed genes across erythroid populations. Selected top genes 
overexpressed and downregulated in PS are annotated. Black dots (n = 6,577) 
represent statistically significant genes at a Bonferroni-adjusted significance 
threshold of <0.01. m, Volcano plot of pathway enrichment analysis results via 
erythroid differential gene expression comparisons of the PS to healthy control 
cells. Selected top pathways are annotated. The dotted line represents the 
threshold for consideration at an FDR < 0.1. n, Schematic overview of altered 
(metabolic) genes and pathways in PS relative to the healthy status. Genes and 
pathways upregulated in PS are shown in red and when downregulated shown in 
blue. Note—not all biochemical steps necessarily take place in mitochondria and 
the schematic has been simplified for illustrative purposes.
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Leveraging in vivo pseudotime trajectory analysis and in vitro 
models, we further assessed genomic and mtDNA features during 
erythroid differentiation to study the anemia characteristic of PS  
(Fig. 7). Our data suggest that serine/glycine biosynthesis is upreg-
ulated in PS cells to maintain DNA production and other critical 
components of the cell in states of mitochondrial dysfunction48–50. 
Mitochondrial one-carbon metabolism appears to be less sensi-
tive to product inhibition by increased NADH:NAD+ ratios, which 
are associated with mtDNA-related diseases due to an impaired 
electron transport chain34. These downstream perturbations may 
contribute to the downregulation of heme biosynthesis51, which is 
necessary for adequate hemoglobin production during red blood cell  
generation52. We hypothesize that glycine may be redirected to synthe-
size one-carbon precursors for DNA replication in highly proliferative 
erythroblasts and/or GSH to scavenge increased ROS levels resulting 
from mitochondrial dysfunction. Correspondingly, we observed the 
downregulation of heme biosynthesis genes, which may lead to excess 
iron accumulation and granular depositions, ultimately forming char-
acteristic sideroblastic cells in PS.

In sum, our multi-omic methods revealed unique genomic altera-
tions in response to pathogenic mtDNA in distinct cellular compart-
ments throughout the hematopoietic system. While mitochondria 
are ubiquitous, they nevertheless fulfill distinct roles depending on 
cell type and cell state. This emphasizes the need to ideally study 
patient-derived cellular specimens to fully capture alterations resulting 
from mitochondrial dysfunction attributable to germline or somatic 
mtDNA mutations. In this light, we demonstrate how comprehensive 
single-cell multi-omic approaches provide biologically important 
insights into the molecular alterations of primary mitochondrial 
defects.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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Methods
Our research complies with all relevant ethical and regulatory guid-
ance, including the Institutional Review Board at Boston Children’s 
Hospital, ethics approval from Charité Universitätsmedizin Berlin, 
Germany, and a research agreement with the North American Mito-
chondrial Disease Consortium (NAMDC).

Cell lines and cell culture
Biological samples for cell lines were procured under protocols 
approved by the Institutional Review Board at Boston Children’s Hos-
pital, after obtaining written informed consent in accordance with the 
Declaration of Helsinki. PS fibroblasts were derived from the patient 
bone marrow (PS1 and PS2) or skin (PS3). Control fibroblasts were 
derived from healthy donors’ skin (Control 1 and Control 2). All fibro-
blasts were grown in DMEM containing 15% fetal bovine serum (FBS), 
l-glutamine, nonessential amino acid and penicillin/streptomycin. 
Cells were incubated at 37 °C with 5% carbon dioxide (CO2).

Healthy donor and patient samples
Primary human peripheral blood and bone marrow samples were col-
lected under Institutional Review Board-approved protocols and with 
written informed consent for genomic sequencing. Primary hemat-
opoietic samples were collected from three previously diagnosed 
patients, including a 7-year-old male with PS/KSS (‘PT1’), a 4-year-old 
female with PS (‘PT2’) and a 4-year-old male with PS and del7q MDS 
(‘PT3’). Peripheral blood and BMMNCs were isolated using Ficoll Paque 
Plus solution and density gradient centrifugation using SepMate tubes 
(StemCell Technologies). PBMCs from adult female donors (‘KSS1’, 
‘KSS2’ and ‘CPEO1’) were obtained in collaboration with NAMDC53. Both 
donors with KSS presented with pigmentary retinopathy and various 
neurological symptoms, as KSS1 was diagnosed with hearing loss and 
KSS2 was diagnosed with ataxia and dementia over the disease course. 
There were limited relevant clinical annotations for CPEO1. None of 
the patients had defined postmitotic heteroplasmy levels following 
the diagnosis available in the NAMDC records. All PBMC samples were 
stored in vapor-phase liquid nitrogen after cryopreservation with 10% 
dimethyl sulfoxide until analysis.

Healthy donor BMMNCs were obtained from StemCell Tech-
nologies. Healthy adult CD34+ HSPCs were obtained from the Fred 
Hutchinson Hematopoietic Cell Processing and Repository. The CD34+ 
samples were de-identified, and approval for use of these samples for 
research purposes was provided by the Institutional Review Board 
and Biosafety Committees at Boston Children’s Hospital. For healthy 
pediatric controls for the differential gene expression analyses and 
T-cell culture experiments, pseudonymized samples from bone marrow 
donors of 5 (‘Ped1’) and 14 (‘Ped2’) years of age were obtained at Charité 
Universitätsmedizin Berlin, Germany, following approval of the local 
ethics commission (EA2/144/15). Informed consent was obtained from 
parents/legal guardians for all pediatric material.

Statistics and reproducibility
No statistical method was used to predetermine the sample size. No 
data were excluded from the analyses. The experiments were not rand-
omized. The investigators were not blinded to allocation during experi-
ments and outcome assessments. All custom codes used to replicate 
analyses are available as part of the code availability.

Human T-cell activation cultures
PBMCs or isolated T cells were cultured in RPMI-1640 medium supple-
mented with 10% FBS, penicillin and streptomycin, as well as 10 ng ml−1 
IL-2 (PeproTech) at 37 °C and 5% CO2. Cells were in vitro activated with 
plate-bound anti-CD3 antibody (5 μg ml−1, clone OKT3, BioLegend) 
plus soluble anti-CD28 antibody (1 μg ml−1, clone 28.2; BioLegend, 
302901). Upon thawing (defined as ‘day 0’), cells were resuspended at 
a concentration of ~106 cells per ml in culture medium plus anti-CD28 

antibody, and ~150,000 cells were plated into 96-well plates precoated 
with anti-CD3 antibody. After 48 h of activation (defined as ‘day 2’), cells 
were transferred into uncoated plates and maintained at a density of 
1–2 × 106 cells per ml. Cell counts were determined every 2–3 d.

The following culturing conditions were used for the prolifera-
tion assay: RPMI-1640 medium supplemented with 5 mM glucose, 
2 mM stable glutamine, 10% FBS, penicillin and streptomycin, as well 
as 10 ng ml−1 IL-2 (PeproTech) with or without the presence of 1 mM 
pyruvate and 200 nM uridine at 37 °C and 5% CO2. PBMCs were labeled 
with CellTrace Violet (2.5 μM; Thermo Fisher Scientific, C34557) before 
activation according to the manufacturers’ instructions. Cell prolif-
eration was measured on day 4 after activation as measured by the 
dilution of CellTrace Violet upon activation. In vitro activated T cells 
were stained using 1:100 AF488-conjugated CD3 (clone OKT3; BioLe-
gend, 317310), 1:100 PE-conjugated CD4 (clone PRA-T4; BioLegend, 
300508), 1:100 APC-conjugated CD8 (clone SK1; BioLegend, 344721), 
1:100 BV785-conjugated CD45RA (clone HI100; BioLegend, 304139) 
and 1:2,000 Fixable Viability Dye eFluor 780 (eBioscience, 65-0865-18).

Human erythroid in vitro cell culture
BMMNCs or CD34+ HSPCs from healthy donors or PT3 were differenti-
ated into mature erythroid cells using a three-phase culture protocol54,55. 
Cells used for scRNA-seq and mtscATAC-seq experiments were derived 
from two independent cultures using PT3 cells, but two different healthy 
control donors were used for each culture. In phase 1 (days 0–7), cells 
were cultured at a density of 105–106 cells per ml in IMDM supplemented 
with 2% human AB plasma, 3% human AB serum, 1% penicillin/strepto-
mycin, 3 IU ml−1 heparin, 10 μg ml−1 insulin, 200 μg ml−1 holo-transferrin, 
1 IU EPO, 10 ng ml−1 stem cell factor and 1 ng ml−1 IL-3. In phase 2 (days 
7–12), IL-3 was omitted from the medium. In phase 3 (days 12–18), cells 
were cultured at a density of 1 × 106 cells per ml, with both IL-3 and SCF 
omitted from the medium, and the holo-transferrin concentration was 
increased to 1 mg ml−1. Cells were cultured at 37 °C and 5% CO2.

Flow cytometry analysis and sorting
For flow cytometry analysis and sorting, cells were washed with 
FACS buffer (1% FBS in PBS) before antibody staining. In vitro cul-
tured primary erythroid cells were stained using 1:50 APC-conjugated 
CD235a (glycophorin A, clone HIR2; eBioscience, 50-153-69) and 1:50 
FITC-conjugated CD71 (clone OKT9; eBioscience, 14-0719-82) for 
15 min on ice. PT3 bone marrow-derived CD34+ cells were stained 
using 1:40 APC-conjugated CD34 (clone 581; BioLegend, 343509). 
In vitro activated T cells were stained using 1:200 AF488-conjugated 
CD3 (clone OKT3; BioLegend, 317310), 1:200 PE-conjugated CD4 (clone 
PRA-T4; BioLegend, 300508), 1:100 APC-conjugated CD8 (clone SK1; 
BioLegend, 344721), 1:200 PE-Cy7-conjugated CD45RO (clone UCHL1; 
BioLegend, 304229), 1:200 BV785-conjugated CD45RA (clone HI100; 
BioLegend, 304139), 1:50 BV605-conjugated CCR7 (clone G043H7; 
BioLegend, 353223) and 1:50 APC-H7-conjugated CD27 (clone MT271; 
BD Bioscience, 560223). For mtscATAC-seq and ASAP-seq experi-
ments, residual granulocytes were excluded by staining cells using 
1:50 PE-conjugated CD66b (clone G10F5; BioLegend, 305102). For 
live/dead cell discrimination, Sytox Blue was used at a 1:1,000 dilution 
according to the manufacturer’s instructions (ThermoFisher Scientific, 
S34857). FACS analysis was conducted on BD Bioscience Fortessa flow 
cytometers at the Whitehead Institute Flow Cytometry Core and at 
the Berlin Institute of Health and Berlin Institute for Medical Systems 
Biology. Cell sorting was conducted using the Sony SH800 sorter with 
a 100-μm chip at the Broad Institute Flow Cytometry Facility. The data 
were analyzed using the FlowJo software v10.4.2.

May–Grünwald-Giemsa staining
Harvested cells were washed once at 300g for 5 min, resuspended in 
200 μl of FACS buffer and spun onto poly-L-lysine-coated microscope 
slides with a Shandon 4 (ThermoFisher Scientific) cytocentrifuge at 
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300 rpm for 4 min. Visibly dry slides were transferred into the May–
Grünwald solution (Sigma-Aldrich) for 5 min, rinsed four times every 
30 s in water and transferred to Giemsa solution (Sigma-Aldrich) for 
15 min. Slides were washed as described previously, dry mounted 
with coverslips and examined. All images shown were taken using 
a Metafer slide scanning platform and software (Metasystems) at  
63× magnification.

Mitochondrial single-cell ATAC-seq (mtscATAC-seq)
MtscATAC-seq libraries were generated using the 10× Chromium 
Controller and the Chromium Single Cell ATAC Library & Gel Bead Kit 
(1000111) according to the manufacturer’s instructions (CG000169-Rev 
C and CG000168-Rev B) as outlined below and previously described 
to increase mtDNA yield and genome coverage9. Briefly, 1.5 ml or 2 ml 
DNA LoBind tubes (Eppendorf) were used to wash cells in PBS and 
downstream processing steps. After washing, cells were fixed in 0.1 
or 1% formaldehyde (FA; ThermoFisher Scientific, 28906) in PBS for 
10 min at room temperature, quenched with glycine solution to a final 
concentration of 0.125 M and washed twice in PBS via centrifugation 
at 400g for 5 min at 4 °C. Cells were subsequently treated with lysis 
buffer (10 mM Tris–HCL, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% NP40 
and 1% BSA) for 3 min for primary cells and 5 min for cell lines on the 
ice, followed by addition of 1 ml of chilled wash buffer and inversion 
(10 mM Tris–HCL, pH 7.4, 10 mM NaCl, 3 mM MgCl2 and 1% BSA) before 
centrifugation at 500g for 5 min at 4 °C. The supernatant was discarded, 
and cells were diluted in 1× diluted nuclei buffer (10× Genomics) before 
counting using trypan blue and a Countess II FL Automated Cell Coun-
ter. If large cell clumps were observed, a 40-μm Flowmi cell strainer was 
used before processing cells according to the Chromium Single Cell 
ATAC Solution user guide with no additional modifications. Briefly, 
after tagmentation, the cells were loaded on a Chromium Controller 
Single-Cell Instrument to generate single-cell gel bead-in-emulsions 
(GEMs), followed by linear PCR, as described in the protocol using 
a C1000 Touch Thermal Cycler with 96-Deep Well Reaction Module 
(BioRad). After breaking the GEMs, the barcoded tagmented DNA was 
purified and further amplified to enable sample indexing and enrich-
ment of scATAC-seq libraries. All genomic libraries were quantified 
using a Qubit dsDNA HS Assay Kit (Invitrogen) and a high-sensitivity 
DNA chip run on a Bioanalyzer 2100 system (Agilent).

ATAC with selected antigen profiling by sequencing 
(ASAP-seq)
PT3-derived BMMNCs were stained with a 242 TSA-conjugated anti-
body panel (BioLegend; Supplementary Table 3 for a list of antibodies, 
clones and barcodes used for ASAP-seq) as previously described11. To 
enable flow cytometry-based enrichment of CD34+ cells, the sample 
was co-stained using an APC-conjugated CD34 (clone 581; BioLegend, 
343509) to sort live CD66b-CD34+ and otherwise CD66b-BMMNCs, 
which were then pooled after sorting and processed for ASAP-seq as 
previously described11 and outlined online at https://cite-seq.com/
asapseq/. Briefly, following sorting, cells were fixed in 1% FA and pro-
cessed as described for the mtscATAC-seq workflow described previ-
ously, with the modification that during the barcoding reaction, 0.5 μl 
of 1 μM bridge oligo A (BOA for TSA) was added to the barcoding mix. 
Silane bead elution and SPRI cleanup steps were modified as described 
to generate the indexed protein tag library11.

scRNA-seq
scRNA-seq libraries were generated using the 10× Genomics Chromium 
Controller and the Chromium Single Cell 3′ Library Construction Kit v2 
according to the manufacturer’s instructions. Briefly, the suspended 
cells were loaded on a Chromium Controller Single-Cell Instrument 
to generate single-cell GEMs, followed by reverse transcription and 
sample indexing using a C1000 Touch Thermal Cycler with 96-Deep 
Well Reaction Module (BioRad). After breaking the GEMs, the barcoded 

cDNA was purified and amplified, followed by fragmenting, A-tailing 
and ligation with adaptors. Finally, PCR amplification was performed 
to enable sample indexing and enrichment of scRNA-Seq libraries.

10× Genomics multiome
Single-cell multiome libraries of healthy pediatric control PBMCs 
were generated using the 10× Genomics Chromium Next GEM Single 
Cell Multiome ATAC + Gene Expression reagent bundle (100285) and 
the Chromium controller according to the manufacturer’s instruc-
tions (CG000338-Rev E). Briefly, following the sorting of live and 
CD66b-negative cells, 1.5 ml DNA LoBind tubes (Eppendorf) were 
used to wash cells in PBS and for downstream processing steps. After 
washing, cells were lysed for 3 min in lysis buffer (10 mM Tris–HCL, pH 
7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20, 0.1% NP40, 0.01% digi-
tonin, 1% BSA, 1 mM DTT and 1 U μl−1 RNase inhibitor). Following lysis, 
cells were washed three times with 1 ml wash buffer (10 mM Tris–HCL, 
pH 7.4, 10 mM NaCl, 3 mM MgCl2, 1% BSA, 0.1% Tween-20, 1 mM DTT 
and 1 U μl−1 RNase inhibitor) before centrifugation at 500g for 5 min 
at 4 °C. The supernatant was discarded, and cells were diluted in 1× 
diluted nuclei buffer (10× Genomics) before counting using trypan 
blue and a Countess II FL Automated Cell Counter. If large cell clumps 
were observed, a 40-μm Flowmi cell strainer was used before process-
ing cells according to the Chromium Next GEM Single Cell Multiome 
ATAC + Gene Expression user guide with no further modifications. 
Briefly, after transposition and chip loading, the cells were loaded into 
the Chromium Controller instrument to generate single-cell GEMs, 
followed by incubation as described in the protocol using a C1000 
Touch Thermal Cycler with 96-Deep Well Reaction Module (BioRad). 
After breaking the GEMs, the barcoded DNA was purified and further 
amplified before separate ATAC and cDNA library construction. For the 
ATAC part, the purified DNA was further amplified to enable sample 
indexing and enrichment of the DNA. The cDNA was further ampli-
fied, purified and quantified using a high-sensitivity DNA chip run 
on a Bioanalyzer 2100 system (Agilent). The cDNA was subsequently 
fragmented, PCR-amplified and purified as depicted in the Chromium 
Next GEM Single Cell Multiome ATAC + Gene Expression user guide 
with no further modifications.

DOGMA-seq
For Pearson PT1, PBMCs were processed with DOGMA-seq as described 
previously11. Briefly, PBMCs were stained with total-seq A antibody pan-
els (TotalSeq-A Human Universal Cocktail, v1.0; BioLegend, 399907; no 
dilution), PE-conjugated CD66b and Sytox Blue, and dead and CD66b+ 
cells were removed via sorting. Sorted live cells were fixed at 0.1% FA 
for 5 min at room temperature, and subsequent lysis/permeabilization 
steps were analogous to the multiome protocol except for Tween-20, 
and digitonin was omitted from the lysis and wash buffers. Permeabi-
lized cells were then processed as described for the multiome workflow 
above with the modification of adding 1 μl of 0.2 μM antibody-derived 
tag (ADT) additive primer (CCTTGGCACCCGAGAATT*C*C). After SPRI 
cleanup of the preamplification PCR product, the beads were eluted in 
100 μl of EB buffer. Notably, 25 μl of the eluate were used for ATAC-seq 
library processing, and 35 μl were each used as input for cDNA and 
antibody tag amplification11, respectively. Libraries for MAS-ISO-seq 
were constructed using the cDNA from the RNA modality as previously 
described56. While the MAS-ISO-seq libraries were of high quality, the 
low mtRNA capture in the DOGMA-seq assay limited further analysis 
as we detected less than one fusion or relevant wild-type mtRNA per 
cell from these libraries (Supplementary Fig. 2). Furthermore, we note 
the fixation step as part of the DOGMA-seq workflow that reduces the 
average cDNA fragment size.

Sequencing
All libraries were sequenced using the Illumina NextSeq550 and 
NovaSeq6000 sequencing platforms. 10× Genomics scATAC-seq 
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and ASAP-seq libraries were sequenced with paired-end reads (2 × 72 
cycles). 10× Genomics multiome and 3′ scRNA-seq libraries were 
sequenced as recommended by the manufacturer. For DOGMA-seq and 
in vitro T-cell stimulation libraries (Fig. 3), libraries were sequenced on 
the NovaSeq6000 platform with a 2 × 150 bp of 2 × 100 paired-end read 
configuration, which were trimmed to be 2 × 72 cycles for compatibility 
with the optimized deletion calling workflow originally implemented 
on the NextSeq. MAS-ISO-seq libraries were sequenced using two 
SMRT cells using the PacBio Sequel II as previously described56. Both 
cells yielded >30 M reads, and >99% of reads had a valid barcode and 
UMI from the 10× multiome/DOGMA-seq design.

mtDNA deletion calling and heteroplasmy estimation in single 
cells
Although large mtDNA deletions have been well-documented in a 
variety of next-generation sequencing datasets, we observed that 
coordinates associated with deletions (for example, the ‘common’ 
deletion) may be incorrect at base-pair resolution. These differences 
are primarily due to differences in the coordinates of the mitochon-
drial reference genome and variations in the results of sequencing 
read alignment tools, particularly near homomorphic sequences at 
deletion junctions. Thus, we recommend using the sequencing data 
from the particular sequencing experiment to identify the deletion 
junction within the primary sequencing data that is being analyzed. 
As part of our software solution, mgatk-del in ‘find’ mode takes a.bam 
file and compiles a list of key summary statistics, including the number 
of clipped reads per position, secondary alignment bases and overall 
coverage, to identify deletions. The outputs of mgatk-del find include 
plots (for example, Extended Data Fig. 1b) and tables that facilitate 
identifying the specific base pairs associated with the mtDNA deletions.

After the precise breakpoints have been determined, single-cell 
mtDNA deletion heteroplasmy can be estimated using the second 
step in the mgatk-del pipeline. Here PCR-deduplicated single-cell bam 
files (emitted as intermediate output in the standard mgatk pipeline) 
serve as the primary input, yielding an estimation of mtDNA deletion 
heteroplasmy per user-specified deletion. This metric is determined 
by using the ratio of reads overlapping the deletion junction that either 
support (via clip) or provide no evidence of the deletion (contiguous 
alignment over the read window, as depicted in Fig. 1c,d). Notably, each 
paired-end read contributes only once to the heteroplasmy metric. As 
a comparison, coverage-based heteroplasmy (Fig. 1e) was estimated 
via one minus the ratio of mean per-base coverage within the deleted 
region over the mean per-base coverage outside the deleted region. For 
negative values (when the within-deleted region coverage exceeded 
that of the outside region), values were adjusted to 0% heteroplasmy 
for display purposes (coverage-based heteroplasmy was not used in 
any downstream analyses).

To generate simulated sequencing datasets and to benchmark this 
approach, we used the wgsim tool from within samtools57 to generate 
paired-end reads of length 72 bp (same length as for our mtscATAC-seq 
data), 50 bp or 100 bp, which represent common sequencing con-
figurations. Sequencing reads were simulated from either the revised 
Cambridge reference sequence (rCRS) or a synthetic mtDNA chro-
mosome that encoded the specified deletion. Simulated sequencing 
reads were then aligned to the masked reference genome used by 
CellRanger-ATAC, and the resulting aligned reads from the.bam files 
were mixed in specific ratios (ten mixtures per deletion) to specify the 
true heteroplasmy for the given simulation. The estimated hetero-
plasmy was computed by running the function used in mgatk-del with 
the search space of possible values in the outer-param and inner-param 
and then the root-mean-squared error (RMSE) was computed based on 
the difference. In total, 22 mtDNA deletions were considered, which rep-
resented a curated list of the six deletions in our study and 16 additional 
deletions that were curated from MITOMAP58. The default parameters 
in mgatk-del (outer-param, 9; inner-param, 24) represent values that 

performed consistently well across a variety of deletions and read 
lengths. We suggest that mgatk-del can produce reasonable single-cell 
heteroplasmy estimations from the default parameters. Specifically, we 
observed a mean 0.93% RMSE difference between default and optimal 
hyperparameter values across our six PS mtDNA deletions in the cell 
lines and primary cells. Thus, we suggest that a grid search to determine 
optimal hyperparameters for accurate heteroplasmy estimation may 
be useful but typically unnecessary for new datasets.

To quantify that the variance in heteroplasmy was attributable to 
variation in coverage per single cell (Extended Data Figs. 1g and 2c), 
the overall mean per comparison was computed, and a permuted het-
eroplasmy was simulated using the rbinom() function with the overall 
heteroplasmy and per-cell coverage as inputs. The observed (true data) 
and null (output of rbinom simulation) are shown for each comparison. 
To assess the sensitivity and specificity of the heteroplasmy estimation, 
a threshold of 1% was used for ‘detection of deletion’ (Extended Data 
Fig. 1i). For further validation of heteroplasmy estimation as a function 
of coverage, we used the simulated reads from the wgsim alignments 
to synthetically create cells with a predetermined heteroplasmy at 15 
variable coverages between 10× and 500× coverage (Extended Data 
Fig. 1j) and subsequently estimated heteroplasmy with the core func-
tion in the mgatk-del workflow. Per deletion, we simulated 100 cells 
and averaged the mean absolute error to quantify the bias associated 
with the mgatk-del coverage estimates from both coverage and clipped 
heteroplasmy. Collectively, our benchmarking and simulation analysis 
indicates that for specific inference near 0%, clipped-read-based heter-
oplasmy performs better, whereas coverage-based heteroplasmy (once 
base-pair resolution junctions are inferred) can produce more accurate 
absolute heteroplasmy estimates, particularly in lower coverage set-
tings, including the DOGMA-seq data shown here. For this study, we 
consistently use the clipped-read base estimates from mtscATAC-seq 
data to both accurately infer purifying selection in varied populations 
and as the mean coverage of our mtscATAC-seq profiles was 81.5×. 
Full details of the simulations, including code for reproducibility, 
and additional discussion of the methods are available as part of our 
online resources.

scATAC-seq analyses
Raw-sequencing data were demultiplexed using CellRanger-ATAC 
mkfastq. Demultiplexed sequencing reads for all libraries were 
aligned to the mtDNA blacklist modified9 hg38 reference genome 
using CellRanger-ATAC count v2. Deletions in mtDNA were identified 
per patient library and heteroplasmy was quantified using the exact 
breakpoints as discussed in the previous section. Downstream analyses 
of the three PS donors and one healthy donor previously profiled with 
mtscATAC-seq9 were performed after identifying cells with a minimum 
depth of 10× on mtDNA, 1000 ATAC fragments passing filters and 
45% of fragments in accessibility peaks from an aggregated peak set. 
Latent semantic indexing (LSI) was performed, and the 2–30 compo-
nents were adjusted for donor effects using harmony before produc-
ing a two-dimensional embedding and clustering using the harmony 
components59. Gene activity scores were computed and normalized 
using the Signac workflow60. For PBMC cell-type annotations, granular 
cell-type labels and UMAP coordinates were derived by using the Seurat 
Dictionary Learning16 for cross-modality integration. We used Azimuth 
CITE-seq reference dataset labels61 with public 10× genomics multiome 
RNA- and ATAC-seq PBMC data as a cross-modality bridge. Libraries for 
the MELAS donors10 were reprocessed with the hg38 scATAC-seq refer-
ence and consistently projected using the Seurat reference. Libraries 
for the CPEO and KSS donors were processed consistently as well, and 
the base-pair resolution for the deletions was inferred from the ‘_del_
find.clip.tsv’ file from mgatk-del-find. For all deletions, the top clipped 
base pairs were called deletions in Fig. 4 from this analysis. Statistical 
comparisons of the extent of purifying selection (for example, Fig. 2 
cumulative distribution plots) were computed based on the proportion 
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of cells with less than 1% heteroplasmy using a two-sided proportion 
test in R. The uncorrected P values are shown in each panel.

scRNA-seq analyses
PS cell-derived 10× 3′ scRNA-seq sequencing libraries were demul-
tiplexed and aligned to the hg38 reference with CellRanger v3.0.2. 
Healthy PBMC datasets were augmented from the public resource of 
10× single-cell gene expression. Raw-sequencing reads from two librar-
ies (pbmc4k and pbmc8k) of 10× 3′ v2 chemistry were downloaded 
and reprocessed consistent with the PS cell libraries. Filtered count 
matrices from the two 10× 3′ v3 chemistries (pbmc5k and NextGEM) 
were downloaded from the online resource as they were already aligned 
to the same reference as the rest of the PS data. We note that the pairs of 
libraries from each technology were derived from the same biological 
donor (‘H1’ for v2 libraries; ‘H2’ for v3 libraries). Separately, scRNA-seq 
libraries (‘Ped1’ and ‘Ped2’) from the two pediatric donors were aligned 
to the same hg38 reference and aggregated at the counts-matrix level 
as the reference transcriptome used for quantification was identical 
between the libraries.

Using the filtered gene by cell count matrices for all scRNA-seq 
libraries, we identified and removed putative cell doublets using scrub-
let62 with the default parameters and specified a 5% expected doublet 
rate. Barcodes identified as cell doublets were then filtered. Next, 
we performed data integration across these seven libraries for the 
PBMC reference projection via Azimuth via Seurat v4. Differential gene 
expression summary statistics from scRNA-seq libraries were com-
puted using edgeR (v3.16.0)63 while adjusting for the scaled number 
of genes detected per cell (edgeRQLFDetRate64). We note that while 
edgeR was originally introduced for bulk RNA-seq, a comparison of 
differential expression tools demonstrated good performance for 
this approach compared to other bulk and single-cell strategies64. We 
performed gene-set enrichment analyses with the Panther Pathway 
enrichments using the WebGestalt v2019 framework65 using a rank 
ordering of genes by the signed z score (Supplementary Figs. 3 and 4). 
Bulk expression data from GTEx were curated from the GTEx online 
portal for the indicated genes66. All other visualizations and analyses 
for scRNA-seq data were performed using the Seurat framework. Gene 
module score analyses, including for the oxidative phosphorylation 
pathway, heme biosynthesis pathway and glycolysis, were performed 
using gene sets from the PANTHER dataset accessed via WebGestalt65 
and computed using the AddModuleScore in Seurat using the default 
parameters. For the comparison of within and between donor/state 
heterogeneity (Supplementary Fig. 3), we considered six major cell 
types with an ample number of cells from our reference projection 
annotation. After computing a principal component space using the 
Seurat defaults for all cells, we randomly subsampled 100 cells within 
each condition to make comparisons within or between groups. The 
boxplots in the figure represent the cell–cell distances from all com-
parisons for ten simulation iterations.

DOGMA-seq analyses
For the DOGMA-seq antibody tag data, per-cell and per-antibody tag 
counts were enumerated via the kite | kallisto | bustools framework 
accounting for unique bridging events as previously described11,67. 
Cells called by the CellRanger-arc knee call were filtered based on the 
abundance of protein (>50 unique molecules), minimal nonspecific 
antibody binding (<10 molecules associated with isotype control anti-
bodies), total accessible chromatin (>1,000 nuclear fragments), >50% 
fragments in accessibility peaks and total gene expression (>1,000 
UMIs per cell and >500 genes detected per cells), following our prior 
quality control of cells from DOGMA-seq for use in the 3WNN analyses 
(Extended Data Fig. 2)11. For consistency with other analyses, we used 
the Seurat reference projection of our dataset with the RNA modal-
ity for the DOGMA-seq data and corroborated the cell state classi-
fication by performing the same project using the ATAC modality. 

For comparison of heteroplasmy, we required either a minimum of 
10× total coverage for a coverage-based heteroplasmy estimation 
or a minimum of ten reads supporting or refuting the deletion for 
clipped-based heteroplasmy inference (Extended Data Fig. 2f). For 
the long-rad PacBio sequencing, raw molecules were processed using 
the standard manufacturer’s workflow into full cDNA molecules in 
the format of unmapped.bam files. Deleted molecules or wild-type 
molecules from the MAS-ISO-seq libraries were inferred using the 
base-pair resolution deletion junctions for PT1 between COX1 and ND5 
or the wild-type sequences of a full gene to derive unique 16-mers (8 bp 
on either side of the deletion junction), which we determined empiri-
cally to be unique strings in the human reference genome for PT1. To 
quantify heteroplasmy, we filtered reads for a valid barcode and UMI 
then parsed the full molecules for these unique 16-mers after validating 
that there were no detectable levels of the deletion junction in other 
healthy control samples.

Chromosome 7 copy number (deletion) analysis
del7q analyses were performed only for PT3 as the other patients 
showed no evidence of copy number alterations (either from cytoge-
netics or sequencing data). To assign cells as either wild-type or del7q, 
we performed copy number analyses of the accessible chromatin 
(scATAC-seq) data for all libraries and cells profiled from PT3. From 
the cytogenetics and sequencing data, we estimated the positions 
110,000,000 (on chromosome 7q22) as the approximate break point 
and computed the fraction of fragments occurring after this coordinate 
to get an estimate of the copy number changes across the different 
libraries (shown in Fig. 5b). To call the single-cell del7q status, we used 
CONICS68 on the gene activity matrix and specified a custom region 
spanning the deletion for estimation of the copy number. Because 
the del7q abundance varied between biological sources (for example, 
PBMCs and CD34+ cells) and resulted in different maximum-likelihood 
estimates for the Gaussian distribution parameters, wild-type or 
single-cell del7q genotype per cell was called using a manual thresh-
old of the predicted probability of the two-component mixture model 
based on the density of the first component’s predicted probability. 
Explicitly, the thresholds used were 0.5 for the CD34+ data (Fig. 5), 0.3 
for the ASAP BMMNC dataset (Fig. 6) and 0.3 for the erythroid differ-
entiation dataset (Fig. 7).

Bone marrow ASAP-seq analyses
For the ASAP-seq antibody tag data, per-cell and per-antibody tag 
counts were enumerated via the kite | kallisto | bustools framework, 
accounting for unique bridging events as previously described11,67. 
Cells called by the CellRanger-ATAC knee call were filtered based on 
the abundance of protein (>150 unique molecules) and accessible 
chromatin (>1,000 nuclear fragments) as well as accessible chroma-
tin enrichment (>25% fragments in accessibility peaks) and minimal 
nonspecific antibody binding (<10 molecules associated with iso-
type control antibodies). Dimensionality reduction and clustering 
were performed only using the chromatin accessibility modality of 
the ASAP-seq, and protein expression and gene activity values were 
used to annotate clusters as previously described11. Differential 
protein and gene activity score calculations (via Signac60) were per-
formed using the FindMarkers function in Seurat. Somatic mtDNA 
mutations were identified by running mgatk on the ASAP-seq cells, 
exceeding a mean 20× coverage using the default parameters9. For 
CD34+ analysis and projections (Fig. 6d–g), we used the LSI reference 
projection and reference CD34+ landscape as previously described23. 
For the erythroid pseudotime trajectory (Fig. 7a–d), we used a 
semi-supervised trajectory inference previously introduced69,70 con-
necting the annotated multipotent progenitor populations to the com-
mitted erythroid population. Single-cell pseudotime was estimated 
using the projection of each cell along the axis joined between the  
per-cluster centroids.
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Erythroid single-cell analyses
Raw-sequencing data were demultiplexed and aligned using CellRanger 
and CellRanger-ATAC as done for the PBMC analyses. To minimize batch 
effects, PS and healthy cells were pooled for single-cell processing and 
then computationally deconvolved using donor-specific SNPs. Differ-
ential gene expression, via edgeR (v3.16.0)63, and pathway enrichment 
(Panther Pathway enrichments using the WebGestalt framework65) were 
conducted using the same workflow as the PBMC data. We computed 
a per-cell erythroid module score using 99 genes (for example, GATA1, 
ALAS2 and HBB) highly upregulated in erythropoiesis from our previ-
ous bulk transcriptomic atlas of cells from this in vitro system31 using 
the AddModuleScore function in Seurat with the default parameters.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data associated with this work is available at GEO accession GSE173936.

Code availability
Software and documentation for mitochondrial DNA variant calling, 
including deletion calling and heteroplasmy estimation, is available 
via the mgatk package at http://github.com/caleblareau/mgatk as of 
version 0.6.3. All custom code to reproduce all analyses supporting 
this paper is available at https://github.com/caleblareau/pearson_syn-
drome. Code used in this paper is indexed in Zenodo (https://zenodo.
org/record/7853604).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Deletion and heteroplasmy estimation using 
mgatk-del. (a) Schematic of mgatk-del pipeline, which utilizes the outputs 
of CellRanger-ATAC. Two critical steps of base-resolution deletion calling 
(‘find’) and estimation of single-cell heteroplasmy (‘quantify’) are illustrated. 
(b) Output of mgatk-del ‘find’ for Pearson syndrome deletion 1 (PS1). The red 
vertical lines represent the called deletion breakpoints where the regions were 
joined (blue arc) via a secondary alignment (‘SA’ tag in.bam file). (c) Schematic 
of the simulation framework. Synthetic cells with known heteroplasmy were 
generated via mixtures of reference and PS mtDNA for all previously reported 
deletions. (d) Summary of results from a 50% mix showing the heteroplasmy 
as estimated from the ratio of clipped to unclipped reads. Parameters ‘inner-
param’ and ‘outer-param’ define the number of bases that are discarded on the 
read when estimating the overall heteroplasmy per cell. (e) Results of exhaustive 
simulation for three mtDNA deletions used in the cell mixing experiment. The 
minimum value of the root mean squared error (RMSE) of the estimated and 

true heteroplasmy is noted with an asterisk over the grid search. (f ) Difference in 
mean estimated heteroplasmy (RMSE) in optimal and default parameters across 
a variety of settings indicating the stability. (g) Decomposition of variance using 
a permuted model. Black shows the observed variance whereas green shows the 
spread under a permuted (null) model. The percent of the variance explained 
by this null model is shown. (h) Single-cell correlation of clipped (Fig. 1d) versus 
coverage-based (Fig. 1e) heteroplasmy estimates for valid deletions per indicated 
deletion/donor. The Pearson correlation for the three deletions is indicated.  
(i) % of cells with non-zero heteroplasmy for different deletions at different 
coverages using indicated methods. The left panel assesses sensitivity where 
the true proportion of cells with the deletion is 100%. The right panel assesses 
specificity where the true proportion of cells with the deletion is 0%. For both 
plots, detection of the deletion requires ≥1% heteroplasmy. ( j) The mean absolute 
error in heteroplasmy at 50x coverage is indicated by the value shown on the 
graph for two methods of heteroplasmy estimation, as in (i).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Supporting information for PS PBMC mtscATAC-seq 
analyses. (a) Result of mgatk-del hyperparameter optimization via a simulation 
framework. The minimum value of the root mean squared error (RMSE) of the 
estimated and true heteroplasmy is noted with an asterisk over the grid search. 
(b) Summary of % of cells with 0% heteroplasmy across all hematopoietic cells 
for the three PS donors. (c) Violin plots of each respective mtDNA deletion for all 
three patients in selected T cell populations. Black indicates the observed data. 
Gray represents heteroplasmy under a null model of one mean and the variation 
attributed to differences in coverage per cell. CD8.TEM and MAIT cells have a 

bimodal distribution (indicating purifying selection) whereas CD8+ naive cells 
have a distribution that is more consistent with a single mode of heteroplasmy. 
The percentage of cells with 0% heteroplasmy under observed and null settings 
are noted for each population below the violins. (d) UMAP visualization of 
MELAS bridge reference projection across three donors previously reported. 
(e) Summary of % of cells with 0% heteroplasmy across all hematopoietic cells 
for the three MELAS donors10 with refined cell type annotations from the bridge 
reference projection.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01433-8

Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Supporting analyses for primary PS T cell cultures.  
(a) Representative flow cytometry plot of CD4+ and CD8+ T cells. Cells from the 
four donors (columns) were assessed for CD45RA and CD45RO expression. The 
box indicates the proportion of CD45RAhi/CD45RO− cells summarized in Fig. 3d. 
(b) Summary of flow cytometry data from independent T cell culture comparing 
cells from a healthy pediatric donor to an adult donor. T cells were derived 
from both bone marrow mononuclear cells (BMMNCs) and peripheral blood 
mononuclear cells (PBMCs) for the pediatric donor. (c) Embedding of day 14T 
cells colored by antibody derived tags (ADTs) for CCR4 and IL2RA. (d) Dynamics 
of heteroplasmy for 76 heteroplasmic single nucleotide variants (SNVs) during 
T cell culture. m.12631T > C and m.4225A > G are highlighted. (e) Single-cell 
heteroplasmy of m.12631T > C and m.4225A > G, variants expanding during 

T cell culture, annotated in the day 14 embedding. Blue arrow indicates the 
subpopulation positive for the m.4225A > G variant. (f ) Single-cell heteroplasmy 
of the PS deletion annotated on day 21 derived T cells profiled via mtscATAC-
seq. (g) Single-cell heteroplasmy of m.12631T > C and m.4225A > G, variants 
expanding during T cell culture, annotated in the day 21 cell embedding. Blue 
arrow indicates the subpopulation positive for the m.4225A > G variant. (h) Day 
21 embedding clustering, annotations, and per-cluster heteroplasmy quantified 
via a cumulative distribution function. (i) Independent validation of in vitro 
CD8+ T cell relative expansion (left) and overall T cell proliferation (right) defects 
from PT1 PBMCs. ( j) Summary of cell clusters, heteroplasmy, and marker gene 
scores for PT1 T cells following culture. (k) Day 14 PT1 per-cluster heteroplasmy 
quantified via a cumulative distribution function for PT1 T cells after culture.
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Extended Data Fig. 4 | Supporting information for del7q calling and CD34+ 
mtscATAC-seq analyses. (a) Flow cytometry gating strategy for the sorting of 
live CD66b−CD34+ bone marrow mononuclear cells. (b) Summary of 7q fragment 
abundances in healthy CD34+ and PBMC mtscATAC-seq samples9; compare 
to Fig. 4b with the same cutoff. (c) Result of Gaussian mixture model applied 
to indicated samples. The red trace indicates the first mixture component 
estimated (lower mean) whereas the blue trace represents the second 
component with a higher mean. The healthy PBMC sample does not contain 
a chromosome alteration. (d) Graphical density of cells from mixture model 

(y-axis) and from crude fragment abundance (x-axis; see Fig. 4b). The dotted 
line indicates the cutoff for wild type and del7q annotations. (e) Histograms of 
mtDNA deletion heteroplasmy proportions (%) stratified on del7q status.  
(f ) Projection of a healthy control CD34+ mtscATAC-seq sample onto the 
reference embedding as shown in Fig. 5d. (g) Stacked bar plots of cell type 
proportions for projected cell types from PT3 with PS/MDS stratified by del7q 
status (MDS for positive and wild type for negative) and a healthy control donor. 
(h) Annotation of del7q status in PBMCs, which is primarily identified in myeloid, 
NK, and B-cell populations; see Fig. 2d for cluster annotations.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Supporting analyses for PT3 bone marrow 
mononuclear cell ASAP-seq dataset. (a) Projection of select protein-derived 
antibody tag abundances for indicated proteins. Select arrows indicate 
populations positive for the respective marker. UMAP coordinates same as Fig. 6c. 
(b) Projection of protein surface markers CD56 (NK cells and MDS-associated 
cells) and CD335 (only NK cells) with arrows indicating the two cell populations. 
(c) UMAP of ASAP-seq processed bone marrow mononuclear cells from a PS (top) 
and a healthy control11 (bottom) with hematopoietic stem and progenitor cells 
(‘progenitors’) indicated in the red boxes. (d) Projection of protein tags within 
the boxed progenitor populations as in (c), contrasting the presence of only 
CD71+ cells among CD34+/c-Kit+ cells in PS as compared to the healthy control. 
(e) Volcano plot showing differential gene activity scores for CD8 recent thymic 
emigrants (RTEs) compared to other CD8 naive T cells. Annotated genes in red 
represent known marker genes for RTEs. (f ) Zoom (top) and mtDNA deletion 
heteroplasmy (bottom) in differentiated CD8 T and NK cells from the BMMNC 

populations. (g) Volcano plot illustrating the association between protein  
levels and mtDNA deletion heteroplasmy in single cells. P-values were computed 
from the default two-sided Seurat Wilcoxon test with Bonferroni p-value 
adjustment. (h) Projection of cell state surface markers (CD3, CD8) and top 
antibody tags (CD16, CD195) as determined in (g). (i,j) Reclustering and UMAP 
depiction of PT3 PBMC mtscATAC-seq data identify (i) low heteroplasmy  
and ( j) recent thymic emigrants (RTEs). Cell type annotations as indicated.  
(k) Landscape of 69 heteroplasmic somatic mtDNA mutations identified in BMMNC. 
Statistical test: two-sided Fisher’s exact test. (l) Substitution rate of mgatk 
identified heteroplasmic mutations (y-axis) in each class of mononucleotide 
and trinucleotide change resolved by the heavy (H) and light (L) strands of the 
mitochondrial genome. (m) Scatter plot of 69 somatic mtDNA variants identified 
in panel (l) stratified based on cells annotated as del7q (x-axis) and wild type for 
chr7 (y-axis). (n) Projection of wild type (diploid chr7)-enriched somatic mtDNA 
mutations m.14476G > A (50%) and m.12242A > G (25%).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Supporting information for in vitro erythroid 
differentiation experiments. (a) Reference embedding of bone marrow 
mononuclear cell CITE-seq reference dataset (left) with gene module scores 
for selected pathways annotated on the UMAP embedding. (b) Flow cytometry 
gating scheme used for sorting of in vitro differentiated healthy control and PS 
cells, related to Fig. 7. (c) Flow cytometry plots showing the distribution of CD71 
and CD235a surface marker expression of in vitro differentiated healthy control 
and PS cells at indicated days of culture. (d) MayGrunwald Giemsa stained 
cytospins of in vitro differentiated healthy control and PS cells at day 8 of culture 

at 63x magnification. (e) UMAP of scRNA-seq data colored by predicted cell 
cycle state. Cluster annotations as in Fig. 7e–g. (f ) Comparison of differential 
gene expression between PT3 donor cells with MDS (x-axis) and without MDS 
(y-axis) related to healthy control. The Pearson correlation between all genes 
is annotated (0.82). Genes from relevant pathways or genomic annotations are 
highlighted in specific colors. (g-i) Projection of gene expression of selected 
differentially expressed genes between PS and healthy control erythroblasts, 
including (g) PHGDH, (h) CPOX, and (i) HEBP2. Gene expression coloring is scaled 
for all plots between the first and 99th quantile per gene.
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