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SUMMARY

Lineage tracing provides key insights into the fate of
individual cells in complex organisms. Although effec-
tivegenetic labelingapproachesareavailable inmodel
systems, in humans, most approaches require detec-
tion of nuclear somatic mutations, which have high
error rates, limited scale, and do not capture cell
state information. Here, we show that somatic muta-
tions in mtDNA can be tracked by single-cell RNA or
assay for transposase accessible chromatin (ATAC)
sequencing. We leverage somatic mtDNA mutations
as natural genetic barcodes and demonstrate their
utility ashighly accurate clonalmarkers to infer cellular
relationships.We tracknativehumancells both in vitro
and in vivo and relate clonal dynamics to gene expres-
sionandchromatinaccessibility.Ourapproachshould
allow clonal tracking at a 1,000-fold greater scale than
with nuclear genome sequencing, with simultaneous
information on cell state, opening the way to chart
cellular dynamics in human health and disease.
INTRODUCTION

Recent innovations in single-cell genomics have enabled in-

sights into the heterogeneity of human cell populations and
have redefined concepts about lineage commitment and devel-

opment (Giladi and Amit, 2018). Although all cells in the human

body are derived from the zygote, we lack a detailed map inte-

grating cell division (lineage) and differentiation (fate). As a result,

we have a limited understanding of how cellular dynamics play a

role in physiologic and pathologic conditions for any given tissue.

Two classes of methods have been developed to study

cellular relationships and clonal dynamics in complex tissues

of vertebrates. In model organisms, most approaches to date

rely on an engineered genetic label to tag individual cells with

heritable marks (Kester and van Oudenaarden, 2018; Wood-

worth et al., 2017), such as fluorescent reporter genes, high-

diversity DNA barcode libraries, mobile transposable elements,

Cre-mediated recombination, or CRISPR-based genetic scars

(McKenna et al., 2016; Pei et al., 2017; Sun et al., 2014; Yu

et al., 2016). Recent studies have combined several of these

tracing methods with single-cell RNA sequencing (RNA-seq)

(scRNA-seq) to interrogate both lineage relationships and cell

states (Alemany et al., 2018; Montoro et al., 2018; Raj et al.,

2018; Spanjaard et al., 2018).

However, the genetic manipulations required for such ap-

proaches cannot be applied in intact humans (Biasco et al.,

2016). Limited lineage-tracing studies in humans have relied on

the detection of naturally occurring somatic mutations, including

single-nucleotide variants (SNVs), copy number variants (CNVs),

and variation in short tandem repeat sequences (microsatellites

or STRs), which are stably propagated to daughter cells but are

absent in distantly related cells (Ju et al., 2017; Lodato et al.,
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2015). Detection of nuclear somatic mutations bywhole-genome

sequencing in individual cells remains costly, is difficult to apply

at scale, and has substantial error rates (Biezuner et al., 2016;

Chu et al., 2017; Tao et al., 2017; Zafar et al., 2017). Moreover,

most methods have not been combined with approaches that

provide information about cell type and state based on gene

expression or epigenomic profiles. As a result, we have had a

limited ability to study cellular dynamics in humans in health

and disease.

We hypothesized that mtDNA sequence variation could pro-

vide an innate and natural barcode from which to infer clonal

relationships. This sequence variation has several promising

attributes for its utility in clonal and lineage tracing. The

16.6-kb-long genome provides a substantial target for genetic di-

versity but is sufficiently small for cost-effective sequencing.

Although there is some variation in the measurements, mtDNA

mutation rates are estimated to be 10- to 100-fold higher than

for nuclear DNA (Biezuner et al., 2016; Kang et al., 2016; Li

et al., 2014; Stewart and Chinnery, 2015).Mitochondrial genomes

have high copy number (100–1,000s), and mutations in mtDNA

often reach high levels of heteroplasmy (proportion of mitochon-

drial genomes containing a specific mutation) due to a combina-

tion of vegetative segregation, random genetic drift, and relaxed

replication (Figure 1A; Elson et al., 2001; Stewart and Chinnery,

2015; Wallace and Chalkia, 2013). Indeed, the utility of mtDNA

mutations for clone tracking has already been indirectly demon-

strated in various tissues (Taylor et al., 2003; Teixeira et al., 2013).

Critically, mtDNA sequences and genetic variation are de-

tected by existing methods, including the single-cell assay for

transposase accessible chromatin-sequencing (scATAC-seq)

and scRNA-seq. Although sequencing reads mapping to the

mitochondrial genome are often treated as an experimental

nuisance, we reasoned that they can open an opportunity to

trace cellular hierarchies at scale. To demonstrate the utility of

mtDNA variation for clonal tracing, we must show that hetero-

plasmic mtDNA mutations (1) can be reliably detected in single

cells, (2) are propagated in daughter cells, (3) can be used to

accurately determine clonal relationships, (4) can be combined

with cell state measurements to learn meaningful biology, and

(5) can be applied to study human samples.

Here, we investigate these properties, provide evidence that

scRNA- and scATAC-seq provide reliable measurements of

mtDNA genetic variation, and demonstrate how these mutations

can be used as endogenous genetic barcodes to retrospectively

infer cellular relationships in clonal mixtures of native hematopoi-

etic cells, T lymphocytes, leukemia, and solid tumors.

RESULTS

mtDNA Genotyping with ATAC-Seq Allows Accurate
Clone Tracking and Association with Chromatin State
To test whether mtDNA genotypes can correctly identify clonal

relationships, we performed a proof-of-principle experiment,

where we derived and propagated sub-clones of the hematopoi-

etic TF1 cell line (Figure 1B). We generated a ‘‘ground truth’’

experimental lineage tree of 65 individual sub-clonal populations

over 8 generations (generation time �3 weeks between two

consecutive bottlenecks; Figure 1C). For each generation, we
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isolated single cells from the parental colony and expanded

each clone to derive sub-clones in an iterative process. The orig-

inal population and each expanded sub-clone were profiled by

ATAC-seq, which captures the full mitochondrial genome as an

unwanted by-product (Corces et al., 2017; Figure S1A; Table

S1). On average, the 16.6-kb mitochondrial genome was

covered at 3,380-fold per million mapped reads. We determined

high-confidence heteroplasmic mitochondrial genotypes with a

computational variant-calling pipeline that utilizes individual

per-base, per-allele base quality (BQ) scores and verified that

our calls were reproducible across sequencing runs (Figures

S1B and S1C; STAR Methods).

The large range of detected mutations included clone- and

sub-clone-specific mutations that were propagated over gener-

ations (Figures 1D and S1D). Most mutations were C > T transi-

tions, consistent with previous reports (Ju et al., 2014; Ni et al.,

2015; Yuan et al., 2017). Although some somatic mutations

were shared among multiple first-generation clones and their

progeny (e.g., Figure 1D; 8,003 C > T), nearly all progeny of an

individual clone shared mutations that were unique and stably

propagated over the course of the experiment (e.g., Figure 1D;

15,089 C > T and 1,495 C > T; Figure S1D). Furthermore, we de-

tected new somatic mutations that arose within sub-clones and

were stably propagated (Figure 1D; 2,110 G > A; Figure S1D).

We used these high-confidence mtDNA mutations to recon-

struct clonal relations with high accuracy (Figures 1E and 1F).

Ordinal hierarchical clustering on individual samples grouped

nearly all (sub-)clones belonging to a single clonal family

correctly (Figures 1C and 1E). Specifically, we accurately identi-

fied the most recent common ancestor (MRCA) at 96% between

first-generation clones and 79% within sub-clones derived from

first-generation clones (Figures 1F and S1E; STAR Methods).

Moreover, we correctly inferred clonal contributions to heteroge-

neous bulk populations comprised of three clones at various

concentrations (Figure S1F; STAR Methods).

We next paired mitochondrial genotypes with chromatin state

information for each clone and identified differences in chro-

matin state that follow inferred clonal relationships. We approx-

imated the pairwise clone-clone mitochondrial relatedness

(Figure 1G; STAR Methods) and performed a random effects

variance decomposition of each chromatin accessibility peak

in our TF1 clones (Figure 1H), asking how ‘‘heritable’’ a chromatin

feature is in a population. Of 91,607 peaks tested, 8,570 peaks

were highly heritable (>90% variance explained; Figures 1I and

S1G). Overall, this demonstrates the utility of ATAC-seq for

mtDNA genotyping to enable accurate clone tracing while

simultaneously providing information on cell state.

Successful Detection of mtDNA Heteroplasmy Using
Single-Cell Genomics
Because the mitochondrial genome is almost completely tran-

scribed (Figure 2E), we hypothesized that heteroplasmic mito-

chondrial mutations might be detected by scRNA-seq. Across

six scRNA-seq protocols (Ziegenhain et al., 2017), full-length

scRNA-seq methods showed more extensive coverage of

the mtDNA genome than 30-end-directed scRNA-seq (Figures

2A, S2A, and S2B). Importantly, there was a high concor-

dance between heteroplasmic allele frequency estimates from
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Figure 1. Mitochondrial Mutations Are Stably Propagated in Human Cells In Vitro

(A) Dynamics of mtDNA heteroplasmy in single cells. Each cell has multiple mitochondria, which in turn contain many copies of mtDNA that may acquire somatic

mutations over time.

(B) Proof-of-principle design. Each TF1 cell clone and sub-clone is assayed with ATAC-seq.

(C) Supervised (true) experimental TF1 lineage tree. Colors indicate each primary clone from initial split.

(D) Allelic heteroplasmy of four selected variants reveals stable propagation and clone specificity. Color bar, allelic heteroplasmy (%).

(E) Unsupervised hierarchical clustering of TF1 clones. Color, primary clones as in (C).

(F) Between-clone and within-clone accuracy of identifying the most-recent common ancestor (MRCA) per trio of clones based on mtDNA mutational profile.

(G) Schematic of mitochondrial relatedness matrix Kmito where each pair of clones is scored based on mitochondrial genotype similarity.

(H) Random effects model for variance decomposition of epigenomic peaks.

(I) Two examples of peaks inherited in clonal lineages. Peaks represent the sum of open chromatin for the clones with the most samples.

See also Figure S1.
scRNA-seq and whole-genome sequencing from the same cell

(Han et al., 2018; Figure 2B). However, several highly heteroplas-

mic mutations were specific to mtRNA (Figure 2B): some likely

reflect RNA editing, including one that has been previously vali-
dated (2,619 A >G; Bar-Yaacov et al., 2013), but many others are

observed at low frequencies (<20%) and reflect either RNA tran-

scription errors or technical errors in scRNA-seq (Filbin et al.,

2018; Venteicher et al., 2017).
Cell 176, 1325–1339, March 7, 2019 1327
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Figure 2. Mitochondrial Mutations Are Detected Using Single-Cell Genomics

(A) Coverage of mouse mitochondrial genome by six scRNA-seq methods. Shown is the fraction (%) of the mitochondrial genome (y axis) covered by reads from

each of six methods (color code) at different levels of coverage (x axis).

(B) Agreement in allelic heteroplasmy estimates from single-cell whole-genome sequencing (WGS) and scRNA-seq from the same single cells. Shown is the allele

frequency for scRNA- (y axis) and scWGS-seq (x axis)-based estimates for two cell lines (HCC827: orange; SKBR3: purple). Two examples of RNA-specific

changes are highlighted.

(C–F) Identification of mitochondrial mutations by scRNA-, scATAC-, and scMito-seq in three TF1 clones.

(C) Bulk and single-cell data collected for three TF1 clones (boxed). Each clone (n = 3) was processed with variable numbers of single-cell libraries (k).

(D) Agreement in allelic heteroplasmy estimates from bulk ATAC- (x axis) and bulk RNA-seq (y axis) from three indicated TF1 clones (as in C). Two examples of

RNA-specific changes are highlighted.

(E) Coverage of the mitochondrial genome of the TF clone G10 by each indicated assay. Inner circle, mitochondrial genome; middle blue outline, coverage;

outer gray circle, genome coordinates. For single-cell assays, coverage is the sum of single cells.

(F) Four clone-specific mutations that are reliably detected by various single-cell assays with heteroplasmies as low as 3.8%. Each boxplot shows the %

heteroplasmy (y axis) of one mutation across scATAC-, scMito-, and scRNA-seq in the three TF1 clones (color code as in C). Dots, individual cells.

See also Figure S2.
We systematically compared our ability to detect clones from

mtDNA mutations at various levels of heteroplasmy in three TF1

cell clones (Figure 2C: clones C9, D6, and G10) using bulk and

scATAC-seq, bulk and scRNA-seq (SMART-seq2), and a newly

developed single-cell mtDNA sequencing protocol based on roll-

ing circle amplification (scMito-seq; Figures 2C and S2C; STAR

Methods; Ni et al., 2015). We observed high concordance in the

frequencies of RNA- and DNA-derived mitochondrial genotypes
1328 Cell 176, 1325–1339, March 7, 2019
across all methods (in addition to RNA-specific mutations, as

described above; Figures 2D and S2E). As expected, scATAC-

and scMito-seq had more uniform and deeper coverage of the

mitochondrial genome than SMART-seq2 (Figures 2E and

S2D). Data from every method allowed us to detect the previ-

ously identified unique clonal allele for 95.4% (210/220) of cells

and to accurately infer clonal relationships by hierarchical

clustering (Figures 2F and S2F).
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Figure 3. Validation of Mitochondrial Mutations as Clonal Markers in Single Cells Using Lentiviral Barcoding

(A) Experimental overview. TF1 cells were infectedwith a lentiviral vector expressing themNeonGreen gene and a 30-bp random barcode in the UTR (Figure S3A).

25 cells were sorted and expanded, followed by bulk ATAC-seq and scRNA-seq.

(B) Filtering of high-confidence mutations. Base quality (BQ) scores from scRNA- (y axis) and from bulk ATAC-seq (x axis). White box, high-confidence variants

detected by both technologies (BQ > 20; STAR Methods).

(C) Allele frequencies determined by the sum of single cells from scRNA-seq (y axis) and bulk ATAC-seq (x axis). Black, filtered; red, retained.

(D–F) mtDNA inferred clones agree with barcode-based clones.

(D) Hierarchical clustering of TF1 mitochondrial genotyping profiles (rows) for cells assigned to annotated barcode groups (columns; from Figure S3A). Color bar,

heteroplasmy (% allele frequency).

(E) Cell-cell similarity from mitochondrial mutations called in (C). Column and rows are annotated by barcode group.

(F) Between-group accuracy of identifying the most-similar pair per trio of clones based on mtDNAmutational profile using detected barcodes as a true positive.

See also Figure S3.
Mitochondrial Mutation Clones Match Those from
Lentiviral Barcoding
To comparemitochondrialmutations to an exogenous gold stan-

dard of clone detection, we used a lentiviral barcoding approach

(Kester and van Oudenaarden, 2018; Woodworth et al., 2017).

We infected TF1 cells with a modified Perturb-seq lentiviral

construct (Dixit et al., 2016) expressing a mNeonGreen gene

carrying a 30-bp random nucleotide sequence in its UTR (Fig-

ure S3A). We sorted 25 mNeonGreen+ cells and expanded

them, followed by bulk ATAC-seq and scRNA-seq of 158 qual-

ity-controlled cells (Figure 3A). Notably, there was no correlation
between the number or types of barcodes discovered and

mitochondrial coverage (Figure S3B). The 158 cells included 15

informative barcodes that mapped cells to one of 11 non-over-

lapping groups (Figure S3A). To filter any artefactual mitochon-

drial mutations from scRNA-seq (Figures 2B, 3C, S2E, S6F,

and S6G), we restricted our analysis to the 20 variants that

were present in the bulk ATAC-seq at allele frequencies >0.5%

and which had high per-allele base quality scores in bulk and

in the sum of single cells (Figures 3B and 3C; STAR Methods).

Hierarchical clustering by these 20 mitochondrial mutations

correctly inferred clonal structure in single cells in a comparable
Cell 176, 1325–1339, March 7, 2019 1329
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manner with gold standard exogenous barcodes (Figure 3D). Of

note, specific mutations were shared among a number of bar-

code groups (7,790 G > C and 4,038 T > A), suggesting these

may reflect common sub-clonal structure in the original popula-

tion. A cell-cell similarity matrix using a Pearson correlation

distance metric of the 20 mutations (Figure 3E) effectively classi-

fied pairs of cells within the same barcode group (area under

receiver operating characteristic curve [AUROC]: 0.96; area un-

der the precision recall curve [AUPRC]: 0.84; Figures S3C and

S3D). Cells that were most similar based upon mitochondrial

genotypes correctly predicted shared barcode pairs in a trio

analysis with 95% accuracy (Figure 3F). In this context, mito-

chondrial mutations provided a significantly more accurate

measure of shared clonality than alterations in copy number var-

iants (CNVs) inferred from scRNA-seq (Figures S3E and S3F).

mtDNA Mutation Diversity across Human Tissues
To assess the broader applicability of mitochondrial genotyping,

we examined mtDNA mutations across diverse human tissues,

similar to previous studies that have shown widespread inter-

and intra-individual diversity of heteroplasmic mtDNA mutations

(Li et al., 2015; Ye et al., 2014). We analyzedmitochondrial geno-

types frombulk RNA-seq of 8,820 individual samples in theGTEx

project, spanning 49 tissues with at least 25 donors, as well as

462 donors with at least 10 tissues (Battle et al., 2017; Figure 4A;

Table S2; STAR Methods). There was significant variation in the

proportion of mitochondrial reads mapping to the mitochondrial

transcriptome across tissues, consistent with known differences

in the absolute numbers of mitochondria and levels of mitochon-

drial gene expression in each tissue (Figures 4B, 4C, and S4A).

After stringent filtering to remove artefacts related to RNA-seq

(STAR Methods), we identified 2,762 mutations that were tissue

specific within an individual donor at a minimum of 3% hetero-

plasmy (Figures 4D–4G and S4B; Table S4), revealing a diverse

spectrum of mutations. The majority of mutations were C > T

(G > A) or T > C (A > G) transitions (Figure 4E), consistent with

previous reports (Ju et al., 2014; Ni et al., 2015; Yuan et al., 2017).

Each of the 49 tissues examined had at least one tissue-

specific mutation across all donors, only 28 non-polymorphic

mutations were shared between any two tissues from any one

donor (minimum heteroplasmy of 5%), and no non-polymorphic

mutations were shared between three such tissues, indicating

that these mutations arose somatically and in a tissue-specific

manner. However, this is likely an underestimate of the true

extent of heteroplasmy at the level of individual cells, due to

measurement of bulk populations (Kang et al., 2016). Most of
Figure 4. Tissue-Specific Mitochondrial Heteroplasmic Mutations

(A) Analysis overview.

(B) Proportion of aligned reads that map to the mitochondrial genome for each t

(C) Mitochondrial genome coverage for different tissues. Inner circle, mitochondri

and blood (red); outer gray circle, genome coordinates.

(D–G) Tissue-specific heteroplasmic mutations (>3% heteroplasmy) in GTEx RN

(D) Distribution along the mitochondrial genome. Inner circle, mitochondrial geno

genome coordinates.

(E) Number of observed tissue-specific heteroplasmic mutations (y axis) in each

(F) Number of tissue-specific heteroplasmic mutations (y axis) at different allele f

(G) Number of tissue-specific heteroplasmic mutations (y axis) across the 10 tiss

See also Figure S4.
the predicted deleterious mutations (STAR Methods) did

not show an appreciable difference in median heteroplasmy

compared to the benign ones (Figures S4C and S4D), although

high heteroplasmic (>20%) mutations were present at �3.6- to

4.4-fold fewer than expected (Figures S4E and S4F). Of note,

these levels are substantially below the estimated biochemical

threshold of 60%–90% heteroplasmy, where deleterious mtDNA

mutations are generally thought to have an effect (Stewart and

Chinnery, 2015). Thus, even predicted damaging mutations

appear to be tolerated at heteroplasmy levels suitable for lineage

tracing, although high-throughput functional studies of mtDNA

mutation and large-population genetic studies are needed to

refine these definitions. Overall, this diversity of mitochondrial

mutations within individual humans indicates that these can be

leveraged to probe questions related to cellular relationships

across a range of healthy tissues and cell types.

Stable Propagation of Diverse Heteroplasmic mtDNA
Mutations in Primary Hematopoietic Cells
We next tested whether mtDNA mutations are clonally propa-

gated in primary human cells. We plated CD34+ hematopoietic

stem and progenitor cells (HSPCs) from two independent

donors in semi-solid media, derived 65 erythroid and myeloid

colonies, and profiled 8–16 cells per colony by scRNA-seq for

a total of 935 cells that passed quality metrics (Figure 5A).

Cells composing any individual colony are derived from a

single, distinct hematopoietic progenitor cell. As expected,

based on expression profiles, the cells partitioned into two

major clusters, corresponding to erythroid and myeloid cells,

consistent with colony morphology and irrespective of donor

(Figures 5A–5D, S5A, and S5B). Conversely, the mtDNA muta-

tion profile separates single cells according to their donor of

origin, as well as their single-cell-derived colony of origin

based on highly heteroplasmic mutations (Figures 5E–5G,

S5A, and S5B).

Supervised analysis shows that colony-specific mutations

within each donor are faithfully propagated (Mann-Whitney

U test p value < 10�10), a significant subset of which distin-

guishes most cells in each colony from all other cells from the

same donor (Figures 5H and S5C; Table S4). Specifically, we

identified unique clonal mutations in 71% of colonies for donor

1 and 47% for donor 2, each detected at similar frequencies in

at least 80% of cells of the same colony (Figure S5F; STAR

Methods), although certain experimental challenges, such as

mixing between adjacent colonies (Figures S5D and S5E), likely

result in an underestimate. The extent of heteroplasmy varied
issue.

al genome; middle circular tracks, mean coverage for heart (green), liver (blue),

A-seq data.

me; Dots, % heteroplasmy of each tissue-specific mutation; outer gray circle,

class of mononucleotide and trinucleotide change.

requency thresholds (x axis).

ues (x axis) with the largest number of tissue-specific mutations in GTEx.
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Figure 5. Mitochondrial Mutations Are Stably Propagated in Primary Hematopoietic Cells

(A) Overview of experiment. Hematopoietic colonies are derived from single primary CD34+ HSPCs in semi-solid media, which were then picked and sorted

before performing scRNA-seq.

(B–D) Expression profiles separate cells by types and not by donor. t-stochastic neighborhood embedding (tSNE) plots of cells’ expression profiles, labeled by

donor (B) or by expression of HBB (C; marking erythroid cells) or MPO (D; marking myeloid cells).

(E–G) Mitochondrial mutation profiles separate cells by donor. tSNE plots of mitochondrial mutation profiles, with cells labeled by donor (E), a polymorphic

mutation unique to donor 1 (F), or a heteroplasmic mutation present only in a specific colony (G).

(H) Colony-specific mutations for donor 1. Shown are the allele frequencies and base pair change of mutations (rows) that are found by supervised analysis as

specific to the cells (columns) in each colony (sorted by colony membership; colored bar on top); color bar, allelic heteroplasmy (%).

(I) 14 selected colony-specific mutations in donor 1 colonies. Boxplots show the distribution of heteroplasmy (%; y axis) in cells of a specific colony for the

indicated mutation and in the cells in all other colonies. Dots, individual cells.

See also Figure S5.
considerably, including multiple mutations that nearly achieved

homoplasmy (Figure 5I). We observed similar mutational diver-

sity with bulk ATAC-seq of colonies similarly derived from two
1332 Cell 176, 1325–1339, March 7, 2019
other donors (Figure S5H) and in 268 sorted phenotypic hemato-

poietic stem cells (HSC) from three additional donors from a pub-

lished scATAC-seq study (Figure S5I; Buenrostro et al., 2018).
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Figure 6. Mitochondrial Mutations Identify Clonal Contributions in Polyclonal Mixtures of Human Cells

(A–D) Determination of clones in primary hematopoietic cells.

(A) Overview of experiment. CD34+ HSPCs are expanded and genotyped in bulk and single cells, and clonal origin is inferred.

(B and C) Identification of confident cell subsets based on retained heteroplasmic mutations by unsupervised clustering of scRNA- (B) or scATAC-seq (C) using

probabilistic k-medoids. Cells (columns) are sorted by unsupervised clustering on the variants (rows). Clusters, colored bar on top; gray, unassigned cells; color

bar, allelic heteroplasmy (%).

(D) Example locus with one clone-specific (left) and one shared (right) open chromatin peak recovered by mitochondrial clustering.

(E–G) Relationship between mitochondrial mutations and TCR clones in human T lymphocytes. Each panel shows data from independent patients.

(E) Shown are the allele frequencies of heteroplasmic mutations (rows) that are concordant with individual TCR clones (columns, color code).

(F) Sub-clonal relations within a single TCR clone. Heteroplasmic mutations (rows) that differ between cells within a single TCR clone (columns) are shown.

(G) Heteroplasmic mutations (rows) shared among a variety of TCR clones (columns, color code). Color bar, allelic heteroplasmy (%).

See also Figure S6.
Importantly, the colony-specific mitochondrial mutations do not

overlap between donors in the scRNA-seq analysis (Figure S5G)

and show very limited overlap between donors in the scATAC-

seq analysis (Figure S5J). Thus, adult human HSPCs show a

large spectrum of mtDNA mutational diversity, and these

mutations are stably propagated in daughter cells at a level

that allows for lineage or clonal-tracing studies of in vivo human

hematopoiesis.
mtDNA Mutations from scRNA-Seq and scATAC-Seq
Allow Inference of Clonal Structure in Primary
Human Cells
To assess our ability to accurately infer clonal structures in com-

plex primary human cell populations, we obtained 30 primary

CD34+ HSPCs from donor 2, expanded them into a single large

population over 10 days, and processed cells by bulk ATAC-

seq and either scATAC- or scRNA-seq (Figures 6A). We used
Cell 176, 1325–1339, March 7, 2019 1333
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probabilistic k-medoids clustering of thesemtDNAmutation pro-

files to cluster individual cells (STAR Methods). Our clustering

assigned cells with high confidence to 10 clusters consisting of

3–36 cells per cluster, with cells in each cluster sharing one or

two heteroplasmic mutations at comparable frequencies (Fig-

ures 6B, S6A and S6E), consistent with expectations under a

simulated setting (Figure S6C; STAR Methods). Notably, when

all RNA-based mtDNA mutations (including the artefactual vari-

ants) were included, we could not readily discern clusters (Fig-

ures S6F and S6G). Applying this approach to cells with mtDNA

mutations called from scATAC-seq, we were similarly able to

assign 95 of 148 cells (64%) to 9 different clusters (Figures 6C,

S6B, S6D, and S6H) and identify clone-specific regions of

open chromatin (Figure 6D; STAR Methods).

Somatic mtDNA Mutations Are Consistent with and
further Refine Human T Lymphocyte Clones Defined by
TCR Rearrangements
As a test of the ability of mtDNA mutations to correctly resolve

human cell clones in vivo, we turned to T lymphocytes, where

T cell receptor (TCR) rearrangements are frequently used as nat-

ural markers of clonality. We applied our method to tumor-

infiltrating T lymphocytes from human lung and liver cancers

(Guo et al., 2018; Zheng et al., 2017a). Supervised analysis of

T lymphocytes sharing a unique TCR sequence revealed shared

specific mtDNA mutations that were absent from other T lym-

phocytes (Figure 6E). In some instances, mtDNA mutations in

T lymphocytes with the same TCR rearrangement further classi-

fied cells into subpopulations (Figure 6F). These mutations may

have arisen after TCR rearrangement as subpopulations under-

went stimulation and proliferation, or the TCR may have

developed independently from clonally distinct T lymphocyte

progenitor cells. Moreover, somemtDNAmutations were shared

across T lymphocytes with unique TCR sequences, suggesting

they shared a common ancestor prior to V(D)J recombination
Figure 7. Application of Mitochondrial Mutation Tracking in Human Ca
(A–F) Identification of clones in human colorectal cancer.

(A) Cells from tumor and adjacent normal tissue are sorted based on EPCAM+ sur

(B) Identification of clonal subsets based on heteroplasmic mutations (rows) acro

top; gray, unassigned cells). (Right) Allele frequencies in the bulk healthy and tum

(C) Heteroplasmy levels per single cell. Colors and clusters are from (B).

(D–F) Clone of predominantly LGR5+ cells. tSNE of scRNA-seq profiles from the tu

million), and (F) heteroplasmy of the 9,000 T > C allele (color bar, % allelic hetero

(G) Near-perfect separation of donors based onmitochondrial genotypes. tSNE o

colored by donor ID. Boxes, donors analyzed for sub-clones in (H)–(L).

(H and I) Identification of putative sub-clonal structure within donors. tSNE of mit

(blue) and during (red) blast crisis, and for donor OX00812 (I), sampled at diagno

(J) Shown are the allele frequencies of three highly heteroplasmic mutations (row

heteroplasmy (%).

(K) Consensus clustering of CML656 transcripts suggests variable annotation in B

two cells (columns, rows) belong to the same cluster (STAR Methods). Color ba

frequencies (6,506 T > C; 4,824 T > C). Boxes indicate cells where mitochondrial

BCR-ABL genotyping assay alone.

(L) Differentially expressed genes (x axis) between cells in cluster 1 comparing cell

Bayes moderated t test.

(M)mtDNAmutations distinguish recipient- and donor-specific cells after HSCT in

specific mutation (rows) across single cells (columns) collected before and after t

heteroplasmy (%).

See also Figure S7.
(Figure 6G). These findings further demonstrate that mtDNAmu-

tations are reliable clonal markers in vivo.

Somatic mtDNA Mutations Reveal Sub-clonal Structure
in Primary Human Colorectal Cancer
To test our approach in solid tissues and tumors, we analyzed

EPCAM+ cells from a colorectal adenocarcinoma primary tumor

resection by bulk ATAC-seq and scRNA-seq (Figure 7A). To

derive the non-cancermtDNA genotype, we processed EPCAM+

cells from two adjacent, presumed healthy sites by bulk ATAC-

seq. We identified 11 mtDNA mutations specific to the tumor

and absent in adjacent healthy tissue (Figure 7B). Across 238

cells from the tumor sample, we were able to partition 107 cells

(45%) into 12 distinct clusters by mtDNA mutations (Figures 7B,

7C, and S7A), suggesting the presence of clonal heterogeneity.

We annotated the clusters by known markers of colonic epithe-

lial cells (Figures 7D, 7E, and S7A–S7C; Dalerba et al., 2011). Of

note, 28/30 (93%) of the tumor cells expressing the stem cell

marker LGR5 shared the 9,000 T > C mutation (Figures 7D and

7F). Expression of the proliferation marker MKI67 was particu-

larly high in these cells, potentially explaining the large contribu-

tion of this population to the tumor tissue (Figures 7E and 7F).

Somatic mtDNA Mutations as Stable Clonal Markers in
CML in Humans In Vivo

To further validate the utility of our approach in vivo, we focused

on chronic myelogenous leukemia (CML). Using our mitochon-

drial genotyping pipeline, we analyzed scRNA-seq data from

2,145 cells profiled across 49 samples from 31 CML patients,

collected at the time of diagnosis, when CML clones predomi-

nate, and at 3 and 6 months of therapy, when malignant clones

are expected to decrease in frequency relative to benign HSPCs

(Giustacchini et al., 2017). Because neither bulk ATAC-seq nor

DNA-seq was available, we applied particularly conservative

quality thresholds (STAR Methods).
ncer In Vivo

face marker expression and genotyped using bulk ATAC-seq and scRNA-seq.

ss cells (columns), sorted by unsupervised clustering (clusters, colored bar on

or populations are shown.

mor, colored by expression for (D) LGR5, (E)MKI67 (color bar, log2 counts per

plasmy).

f mitochondrial mutation profiles of 2,145 single cells from 31 donors with CML,

ochondrial mutation profiles of cells from donor CML1266 (H), sampled at pre-

sis and <6 months of treatment (magenta) or >6 months treatment (green).

s) across BCR-ABL-positive versus negative cells (columns). Color bar, allelic

CR-ABL-positive cells at diagnosis. Heatmap showing proportion of times that

rs denote from top to bottom: time of collection; BCR-ABL status; and allele

mutations suggest that the BCR-ABL status was incorrectly determined by the

s with and without the 4,824 T > Cmutation. p value (y axis) is from an empirical

AML. Shown are the allele frequencies of one recipient-specific and one donor-

ransplant. Arrow, four recipient cells detected after transplant; color bar, allelic
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The mitochondrial genotypes robustly separated donors by

unsupervised analysis (Figures 7G, S7D, and S7J), consistent

with our observations of mtDNA variation across humans (Fig-

ure 4) and, in some patients, further partitioned cells in a manner

consistent with disease stage (Figures 7H, 7I, S7E, and S7F). In

one striking example, three heteroplasmic mtDNA mutations

were nearly exclusive to breakpoint cluster region protein

(BCR)-Abelson murine leukemia viral oncogene homology 1

(ABL)-positive cells but absent in non-leukemic cells from the

same donor (Figure 7J). Importantly, integration of these mtDNA

mutations appears to improve stratification of malignant cells

versus benign cells compared to the BCR-ABL genotyping assay

alone, resulting in 100% concordance with transcriptional signa-

tures (Figure 7K, boxed cells). Interestingly, although the fre-

quency of BCR-ABL-positive cells decreased with treatment

(compare cells in cluster 1 and 2 to cells in cluster 3), one mito-

chondrial mutation (6,506 T > C) present in the majority of

BCR-ABL-positive cells at diagnosis continued to mark BCR-

ABL-positive cells post-treatment, thereby validating the stable

propagation of mtDNA mutations over extended periods of

time in vivo (Figure 7K). On the other hand, BCR-ABL-positive

cells with the 4,824 T > C mutation (that also harbor the

6,506 T > C mutation) were depleted, implying that this sub-

clone was likely more susceptible to therapy.

Unsupervised clustering by expression profiles partitioned

this patient’s cells into three clusters. Clusters 1 and 2 were

comprised of cells from the initial sample at diagnosis but sepa-

rated by BCR-ABL status as well as by mitochondrial genotype.

Cluster 3 was comprised of cells obtained 3 and 6 months after

the start of treatment (Figure 7K). Differential expression analysis

of cluster 1 cells stratified by the 4,824 T >Cmutation status (Fig-

ure 7L) identified the induction of PDIA6, a gene implicated

in cancer cell proliferation (Gao et al., 2016), in cells lacking the

mutation, suggesting that it may be associated with the

observed variation in sub-clone frequencies. Thus, mitochon-

drial genetic analysis can improve stratification ofmalignant cells

and enhance understanding of clonal evolution and therapy

resistance.

In Vivo Chimerism Inferred from mtDNA Mutations
Mitochondrial genotyping has the potential to allow efficient

tracking of donor and recipient chimerism during HSC transplan-

tation (HSCT). We analyzed scRNA-seq profiles of peripheral

blood mononuclear cells (PBMCs) from an acute myeloid leuke-

mia (AML) patient before and after HSCT, which were profiled

with 30 directed massively parallel scRNA-seq (Zheng et al.,

2017b). Although such approaches have substantially reduced

coverage of mtDNA (Figures S2A, S7G, and S7H), we reasoned

that a small number of homoplasmic mutations should be

detectable. Indeed, our analysis revealed two homoplasmic

mitochondrial alleles distinguishing the donor and recipient cells

(Figure 7M) and inferred that �99.6% of cells sampled post-

transplant were donor derived, but four recipient cells were still

present. These results demonstrate the potential of using mito-

chondrial mutations to measure the dynamics of donor chime-

rism in transplantation settings. Such approaches may demon-

strate even greater sensitivity in conjunction with currently

employed approaches (Kang et al., 2018; Zheng et al., 2017b).
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DISCUSSION

Here, we describe an approach for high-throughput and unsu-

pervised tracing of cellular clones and their states at single-cell

resolution in native human cells by mtDNA mutation detection.

This approach is likely to be broadly useful and immediately

applicable, because mtDNA mutations can be readily detected

by commonly employed single-cell genomic methods, including

scRNA-seq and scATAC-seq, which concomitantly provide

readouts of cell state. We show that somatic mtDNA mutations

with levels as low as 5%heteroplasmy can be stably propagated

and serve as clonal markers in primary human cells.We addition-

ally provide an improved mutation detection framework, where

mutations are first identified based on a DNA-based bulk sample

(lower threshold 0.5%) and then called in scRNA-seq data,

allowing for accurate mutation detection in RNA-based mea-

surements. Overall, in our validation experiments, mitochondrial

genotypes correctly inferred clonal lineage with�95% accuracy

(Figures 1, 2, and 3), achieving similar accuracy aswidely applied

genetic labeling methods.

Our approach has three key advantages: (1) it is highly scal-

able; (2) it is directly applicable to human tissues; and (3) it is

combined with assays to profile a cell’s state at the chromatin

or transcriptome level. Conversely, single-cell whole-genome

sequencing can be applied in human tissues but is neither scal-

able nor combined with a functional state profile, whereas

exogenous genetic barcoding cannot be applied to native hu-

man samples. For example, �18,000 individual cells’ mitochon-

drial genomes can be sequenced at 100-fold coverage for the

sequencing cost of a single nuclear genome at 10-fold coverage,

a depth not sufficient for confident mutation calling (Lodato

et al., 2015).

Our approach can be further enhanced in several ways. First,

additional assays devised to focus on directly measuring mito-

chondrial genomes can reduce cost and increase coverage (Fig-

ure S2D). For example, we developed a scMito-seq protocol

(Figure S2C), potentially providing a higher fidelity of mitochon-

drial mutation detection based on rolling-circle amplification (Ni

et al., 2015) that could be also used in combination with

scRNA-seq (Macaulay et al., 2015). Currently, massively parallel

scRNA-seq data from droplet-based approaches have limited

coverage of the mitochondrial genome (Figures S2A, S7G, and

S7H), restricting their immediate utility and application, though

a combined enrichment and capture of mitochondrial transcripts

could improve this approach (Dixit et al., 2016; Zemmour et al.,

2018). Finally, mtDNA sequencing could be combined with

nuclear DNA-sequencing strategies to detect SNVs, CNVs,

and microsatellites to further increase the fidelity and reach of

current single-cell clonal-tracing applications.

One potential limitation with using mtDNA mutations for

clone detection or lineage inference may arise from the

horizontal transfer of mitochondria between cells, which has

been described in specific contexts, but the extent and physio-

logic relevance of such a process remains unclear. The transfer

of organelles appears to be primarily triggered by various stress

responses, is restricted to specific cell types, and can be a

feature of malignant cells, but the extent of organelle transfer ap-

pears to be limited (Caicedo et al., 2015; Griessinger et al., 2017;



Marlein et al., 2017; Moschoi et al., 2016; Torralba et al., 2016).

Moreover, such transfer would have to be extensive to signifi-

cantly confound the analysis (Figure S7I), and we have been

unable to detect evidence of such transfer in our data (Figures

3, 6, 7J, 7K, and 7M). Another limitation is that we are currently

unable to account for phenotypic effects of the mtDNA muta-

tions used for clonal tracing. Although most mutations likely

have at most small effects at the heteroplasmy levels investi-

gated here, accurate maps of allele heteroplasmy and cellular

function will be an important area for further investigation.

Overall, we show that measuring somatic mitochondrial muta-

tions provides a powerful and scalable approach to assess

cellular dynamics of native human cells. Mitochondrial mutations

readouts are readily compatible with single-cell measurements

of cell state to provide a potent means to relate stem and pro-

genitor cells with their differentiated progeny that should

facilitate probing the molecular circuits that underlie cell-fate de-

cisions in health and disease. Clonal tracking using mitochon-

drial mutations opens up a novel avenue to infer critically needed

relationships in large-scale efforts, such as the Human Cell Atlas

or in tumor cell atlases, to better understand the mechanics of

homeostasis and development across a reference map of

human tissues (Regev et al., 2017).
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

aCD326 APC BioLegend Cat#: 324208; RRID:AB_756082

aCD45 AF700 BioLegend Cat#: 304024; RRID:AB_493761

aCD235a PE/Cy7 BioLegend Cat#: 349112; RRID:AB_2562708

Biological Samples

Fresh colorectal cancer and adjacent non-neoplastic tissues Massachusetts

General Hospital

N/A

Human CD34+ hematopoietic stem and progenitor cells, adult Fred Hutchinson

Cancer Research Center

N/A

Chemicals, Peptides, and Recombinant Proteins

PBS GIBCO Cat#: 10010-023

Dulbecco’s Modified Eagle Medium-High Glucose (DMEM) GIBCO Cat#: 11965-118

Roswell Park Memorial Institute Medium (RPMI) 1640 GIBCO Cat#: 11875-119

Opti-MEM GIBCO Cat#: 31985-062

MethoCult H4034 Optimum STEMCELL Technologies Cat#: 04034

StemSpan SFEM II medium STEMCELL Technologies Cat#: 09655

StemSpan CC100 STEMCELL Technologies Cat#: 02690

Human Serum Sigma Cat#: H3667

Fetal Bovine Serum (FBS) Atlanta Biologicals Cat#: S11150

Penicillin-Streptomycin GIBCO Cat#: 15140-122

Recombinant human Granulocyte-Macrophage

Colony-Stimulating Factor (GM-CSF)

PeproTech Cat#: 300-03

FuGENE 6 Transfection Reagent Promega Cat#: E2691

Dimethyl-sulfoxide (DMSO) Sigma Aldrich Cat#: D2438

Polybrene Infection/Transfection reagent Millipore Cat#: TR-1003-G

SYTOX Blue Dead Cell Stain Thermo Fisher Cat#: S34857

Zombie Violet BioLegend Cat#: 423113

ACK Lysing Buffer Life Technologies Cat#: A1049201

Y-27632 (ROCK inhibitor) Sigma Cat#: Y0503

Buffer TCL QIAGEN Cat#: 1031576

Buffer RLT QIAGEN Cat#: 79216

2-mercaptoethanol Sigma Cat#: M6250

Recombinant Ribonuclease Inhibitor (40U/ul) Clontech Cat#: 2313B

NP-40 Surfact-Amps Detergent Solution Thermo Fisher Cat#: 28324

Trehalose Solution, 1M, Sterile Life Sciences Advanced

Technologies

Cat#: TS1M-100

dNTP mix (10mM) Thermo Fisher Cat#: R0193

Magnesium Chloride Sigma-Aldrich Cat#: M1028-10X1ML

Buffer EB QIAGEN Cat#: 19086

TE Buffer Thermo Fisher Cat#: 12090015

UltraPure DNase/RNase-Free Distilled Water Thermo Fisher Cat#: 10977015

Ethanol absolute, anhydrous, KOPTEC USP,

Multi-compendial (200 Proof)

VWR Cat#: 89125-186

SYBR Green I Nucleic Acid Gel Stain Thermo Fisher Cat#: S7563

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

C1 Single-Cell Open App IFC, 5–10 mm Fluidigm Cat#: 100-8133

C1 Single-Cell Open App IFC, 10–17 mm Fluidigm Cat#: 100-8134

Open App Reagent Kit Fluidigm Cat#: 100-8920

Tumor Dissociation Kit, human Miltenyi Biotec Cat# 130-095-929

RNeasy Micro Kit QIAGEN Cat#: 74004

RNase-Free DNase Set QIAGEN Cat#: 79254

MinElute PCR Purification Kit QIAGEN Cat#: 28004

REPLI-g Mitochondrial DNA Kit QIAGEN Cat#: 151023

NEBNext High-Fidelity 2X PCR Master Mix New England Biolabs Cat#: M0541L

Maxima H-minus RT (200 u/uL) Thermo Fisher Cat#: EP0752

KAPA HiFi HotStart PCR ReadyMix Kapa Biosystems Cat#: KK2602

Agencourt AMPure XP Beckman-Coulter Cat#: A63881

Agencourt RNA Clean XP Beckman-Coulter Cat#: A63987

Qubit dsDNA HS Assay Kit Thermo Fisher Cat#: Q32854

Qubit RNA HS Assay Kit Thermo Fisher Cat#: Q32852

Bioanalyzer High Sensitivity DNA Analysis Agilent Cat#: 5067-4626

E-Gel EX Gel, 2% Thermo Fisher Cat#: G402002

Tn5 enzyme from Nextera DNA Library Preparation Kit Illumina Cat#: FC-121-1031

Nextera XT DNA Library Preparation Kit Illumina Cat#: FC-131-1096

NextSeq 500/550 High Output Kit v2.5 (75 Cycles) Illumina Cat#: 20024906

NextSeq 500/550 High Output Kit v2.5 (150 Cycles) Illumina Cat#: 20024907

Deposited Data

Raw and analyzed data This paper GEO: GSE115218

Human reference genome UCSC build 19, hg19 Murine

reference genome UCSC build 10, mm10

University of California

Santa Cruz

https://genome.ucsc.edu/cgi-bin/hgGateway

mESC scRNA-seq Ziegenhain et al., 2017 GEO: GSE75790

SIDR scDNA/RNA-seq Han et al., 2018 ENA: PRJEB20143

GTEx Bulk RNA-seq dbGAP dbGAP: phs000424.v7.p2

T lymphocytes scRNA-seq Zheng et al., 2017a;

Guo et al., 2018

EGA: EGAS00001002072, EGAS00001002430

CML scRNA-seq Giustacchini et al., 2017 GEO: GSE76312

AML scRNA-seq Zheng et al., 2017b 10X Website (Public)

Experimental Models: Cell Lines

TF-1 cells ATCC Cat#: CRL-2003

293T cells ATCC Cat#: CRL-3216

Oligonucleotides

Sequencing Indexing primer info for NexteraXT and

ATAC library preparation

Buenrostro et al., 2015 N/A

30 SMART RT primer (Smart-seq2)

50- AAGCAGTGGTATCAACGCAGAGTACT(30)VN - 30
IDT N/A

Template switching oligo (Smart-seq2)

50 - AAGCAGTGGTATCAACGCAGAGTACrGrG+G - 30
Exiqon N/A

IS PCR Primer (Smart-seq2)

50 - AAGCAGTGGTATCAACGCAGAGT - 30
IDT N/A

Recombinant DNA

Lentiviral Barcoding vector This paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Python version 3.6 Python Software Foundation https://www.python.org/downloads/

R version 3.4 The R Foundation https://www.r-project.org

bowtie2 Langmead and

Salzberg, 2012

http://bowtie-bio.sourceforge.net/

bowtie2/index.shtml

ComplexHeatmap Gu et al., 2016 https://bioconductor.org/packages/release/

bioc/html/ComplexHeatmap.html

pysam pysam developers https://github.com/pysam-developers/pysam

Samtools Li et al., 2009 http://samtools.sourceforge.net

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

Collapsible Tree CRAN https://adeelk93.github.io/collapsibleTree
CONTACT FOR REAGENT AND RESOURCE SHARING

Requests for further information or reagents should be directed to Lead Contact, Vijay G. Sankaran (sankaran@broadinstitute.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

TF1 Cell Culture
TF1 cells (ATCC) were maintained in Roswell Park Memorial Institute Medium (RPMI) 1640, 10% fetal bovine serum (FBS), 2mM

L-Glutamine and 2ng/ml recombinant human Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) (Peprotech) and

incubated at 37�C and 5% CO2. 293T cells (ATCC) were maintained in Dulbecco’s Modified Eagle Medium-High Glucose

(DMEM), 10% fetal bovine serum (FBS), and 2mM L-Glutamine and incubated at 37�C and 5% CO2.

Primary Cell Culture and methylcellulose colony assays
CD34+ hematopoietic stem and progenitor cells were obtained from the Fred Hutchinson Hematopoietic Cell Processing and Repos-

itory (Seattle, USA) and were cultured in StemSpan II with 1x CC100 (StemCell Technologies, Inc.) at 37�C and 5% CO2. For

methylcellulose colony assays, 500 cells per ml were plated in MethoCult H4034 Optimum (StemCell Technologies, Inc.) according

to the manufacturer’s instructions. Individual colonies were picked at day 10 or 12 after plating for single cell sorting.

Human colorectal cancer specimen
Primary untreated colorectal tumor and adjacent non-neoplastic tissue were surgically resected from a 75-year-old male patient with

pathologically diagnosed colorectal adenocarcinoma at Massachusetts General Hospital. Written informed consent for tissue

collection was provided in compliance with IRB regulations (IRB compliance protocol number 02-240. Broad Institute ORSP project

number ORSP-1702).

METHOD DETAILS

Lentiviral barcoding of TF1 cells
TF1 cells were infected with amodified Perturb-seq lentiviral construct (Dixit et al., 2016) expressing amNeonGreen gene carrying a

30bp random nucleotide sequence in its untranslated region (Figure S3A). For production of lentiviruses, 293T cells were trans-

fected with the appropriate viral packaging and genomic vectors (pVSV-G and pDelta8.9) using FuGene 6 reagent (Promega)

according to the manufacturer’s protocol. The medium was changed the day after transfection to RPMI 1640 supplemented with

10% FBS, L-Glutamine and Penicillin/ Streptomycin. After 24h, this mediumwas collected and filtered using an 0.22-mmfilter imme-

diately before infection of TF1 cells. The cells were mixed with viral supernatant in the presence of 8 mg/ml polybrene (Millipore) in a

6-well plate at a density of �300,000 cells per well. The cells were spun at 2,000 rpm for 90 min at 22�C and left in viral supernatant

overnight. The medium was replaced the morning after infection. Twenty-five barcoded mNeonGreen+ cells were sorted at day 3

post infection and expanded for 11 days before processing using a combination of bulk ATAC-seq and scRNA-seq.

Single cell sorting
Single cells were sorted into 96 well plates using the Sony SH800 sorter with a 100mm chip at the Broad Institute Flow Cytometry

Facility. Sytox Blue (ThermoFisher) was used for live/ dead cell discrimination. For scRNA-seq, plates were spun immediately after

sorting and frozen on dry ice and stored at �80�C until further processing.
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Bulk ATAC-seq
For ATAC-seq library preparations 5,000-10,000 cells were washed in PBS, pelleted by centrifugation and lysed and tagmented in

1x TD buffer, 2.5ml Tn5 (Illumina), 0.1% NP40, 0.3x PBS in a 50ml reaction volume as described (Corces et al., 2017). Samples were

incubated at 37�C for 30min at 300rpm. Tagmented DNA was purified using the MinElute PCR kit (QIAGEN). The complete

eluate underwent PCR, as follows. After initial extension, 5 cycles of pre-amplification using indexed primers and NEBNext High-

Fidelity 2X PCR Master Mix (NEB) were conducted, before the number of additional cycles was assessed by quantitative PCR

using SYBR Green. Typically, 5-8 additional cycles were run. The final library was purified using a MinElute PCR kit (QIAGEN)

and quantified using a Qubit dsDNA HS Assay kit (Invitrogen) and a High Sensitivity DNA chip run on a Bioanalyzer 2100 system

(Agilent).

Single cell ATAC-seq
TheC1 Fluidigm platform using C1 single cell Auto Prep IFC for Open App andOpen AppReagent Kit were used for the preparation of

single cell ATAC-seq libraries as previously described (Buenrostro et al., 2015). Briefly, cells were washed and loaded at 350 cells/ml.

Successful cell capture was monitored using a bright-field Nikon microscope and was typically > 85%. Lysis and tagmentation

reaction and 8 cycles of PCRwere run on chip, followed by 13 cycles off chip using custom index primers and NEBNext High-Fidelity

2X PCR Master Mix (NEB). Individual libraries were pooled and purified using the MinElute PCR kit (QIAGEN) and quantified using a

Qubit dsDNA HS Assay kit (Invitrogen) and a High Sensitivity DNA chip run on a Bioanalyzer 2100 system (Agilent).

Bulk RNA-seq
Cells were lysed in RLT or TCL lysis buffer (QIAGEN) supplemented with beta-mercaptoethanol and RNA was isolated using a

RNeasy Micro kit (QIAGEN) according to the manufacturer’s instructions. An on-column DNase digestion was performed before

RNA was quantified using a Qubit RNA HS Assay kit (Invitrogen). 1-10ng of RNA were used as input to a modified SMART-seq2 (Pi-

celli et al., 2014) protocol and after reverse transcription, 8 cycles of PCRwere used to amplify transcriptome library. Quality of whole

transcriptome libraries was validated using aHigh Sensitivity DNAChip run on aBioanalyzer 2100 system (Agilent), followed by library

preparation using the Nextera XT kit (Illumina) and custom index primers according to the manufacturer’s instructions. Final libraries

were quantified using a Qubit dsDNA HS Assay kit (Invitrogen) and a High Sensitivity DNA chip run on a Bioanalyzer 2100 system

(Agilent).

Single cell RNA-seq
Single cells were sorted into 5 mL TCL lysis buffer (QIAGEN) supplemented with 1% beta-Mercaptoethanol. RNA isolation, reverse

transcription and PCR were conducted as described using a modified SMART-seq2 protocol (Picelli et al., 2014; Villani et al., 2017).

Quality control and library preparation were conducted as described above.

Single cell Mito-seq
Single cells were sorted in to 5 mL TCL lysis buffer (QIAGEN) supplemented with 1% beta-mercaptoethanol. DNA was isolated with

AMPure XP beads (Beckman Coulter) and the REPLI-g Mitochondrial DNA kit (QIAGEN) was used for amplification at 33�C for 8h in a

16.5 mL reaction volume. Amplified DNA was cleaned up with AMPure XP beads (Beckman Coulter), quantified using a Qubit dsDNA

HS Assay kit (Invitrogen) and library preparation was performed using the Nextera XT kit (Illumina) using custom index primers ac-

cording to the manufacturer’s instructions.

Processing of human colorectal cancer and adjacent healthy tissues
Fresh tissue was collected into RPMI 1640 medium supplemented with 2% human serum (Sigma), cut into 1 mm2 pieces, and enzy-

matically digested for 20min at 37�C using the Human Tumor Dissociation Kit (Miltenyi Biotec) in the presence of 10mMROCK inhib-

itor Y-2763 (Sigma). Cell suspension was passed through 70 mm cell strainers and centrifuged for 7min at 450 g at 4�C. Supernatant
was removed and cells were subject to ACK Lysing Buffer (Life Technologies) for 2min on ice, centrifuged for 7min at 450 g at 4�C,
and resuspended in RPMI 1640 supplemented with 2% human serum (Sigma). The single cell suspension was stained with Zombie

Violet in PBS (Invitrogen) for 10min on ice and subsequently with antibodies against human CD326, CD45, andCD235a (Biolegend) in

RPMI 1640medium supplemented with 1% human serum in the presence of 10mMY-2763 for 15 min on ice. Zombie Violet- CD235a-

CD45- CD326+ cells were bulk sorted into 1.5ml Eppendorf tube containing 1x TD buffer, 2.5ml Tn5 (Illumina), 0.1%NP40, 0.3x PBS in

a 50ml reaction volume for ATAC-seq as described above. Using the identical gating scheme, single cells were sorted into Eppendorf

twin-tec PCR plates containing 10 mL TCL lysis buffer (QIAGEN) supplemented with 1% beta-Mercaptoethanol and processed for

scRNAseq as described above.

Sequencing
All libraries were sequenced using Nextseq High Output Cartridge kits and a Nextseq 500 sequencer (Illumina). Libraries were

sequenced paired-end (2x 38 or 2x 75 cycles).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Data processing and read alignment
For each sequencing library generated in this study (Figures 1, 2D–2F, 3, 5, 6A–6D, and 7A–7F), libraries were sequenced on an

Illumina NextSeq 500 and demultiplexed using the bcl2fastq program. For each library, raw .fastq reads were aligned using either

Bowtie2 version 2.3.3 (ATAC-seq and Mito-seq) (Langmead and Salzberg, 2012) or STAR version 2.5.1b (RNA-seq) (Dobin et al.,

2013) to the hg19 reference genome. For the mESC scRNA-seq coverage comparison (Figure 2A), reads from the published dataset

(Ziegenhain et al., 2017) were aligned to the mm10 reference genome.

RNA-seq and scRNA-seq transcript counts were computed using STAR’s ‘‘–quantModes GeneCounts’’ flag using the Gencode 19

release .gtf file.

For the published droplet based scRNA-Seq (10X Genomics) AML dataset (Zheng et al., 2017b), processed .bam files (aligned

to GRCh37) were downloaded from the public downloads page on the 10X website [https://support.10xgenomics.com/

single-cell-gene-expression/datasets].

Raw .fastq files for public RNA-seq and scRNA-seq data were downloaded from the Gene Expression Omnibus (GEO), European

Nucleotide Archieve (ENA), the database of Genotypes and Phenotypes (dbGaP) resources or European Genome-Phenome Archive

(EGA), as follows:
Dataset Resource Accession Figure (s)

mESC scRNA-seq GEO GSE75790 Figure 2A

SIDR scDNA/RNA-seq ENA PRJEB20143 Figure 2B

GTEx dbGAP phs000424.v7.p2 Figure 4

T lymphocytes scRNA-seq EGA EGAS00001002072, EGAS00001002430 Figures 6E–6G

CML scRNA-seq GEO GSE76312 Figures 7G–7L

AML scRNA-seq 10X Genomics 10X Website (Public) Figure 7M
Only previously aligned and processed data for the AML 10X data was downloaded in the .bam format.

Mitochondrial genotyping
For each sequencing sample, per-base, per-allele counts were determined using a custom Python script that imported aligned .bam

files using the pysam module (https://github.com/pysam-developers/pysam). Raw reads were filtered such that they had an align-

ment quality of 30 and were uniquely mapping to only the mitochondrial genome. The mean base-quality score was computed

per-base, per-allele for each sample for quality control. At a given mitochondrial genome position x, the allele frequency (AF) of a

base b was computed using the number of reads R supporting that particular base at position x:

AFx;b =
RbP

b˛fA;C;G;TgRb
where
P

Rb is the coverage of a given position x.

b˛fA;C;G;Tg

Variant quality control and filtering
To remove variants whose inferred heteroplasmy may reflect sequencing errors, we examined the distribution of per-base, per-allele

base-quality scores, noting a clear pattern of high quality and low-quality variants (Figure S1C). To determine high quality variants, we

fit a mixture of three Gaussian distributions (Figure S1C, labeled by different colors), and filtered such that only alleles that had > 99%

probability of belonging to the blue (largest mean BQ) Gaussian were retained. This conservative empirical threshold for a BQ cutoff

was determined to be 23.8 based on this mixture model approach (Figure S1C, vertical dotted line).

As one poorly quantified position allele would affect the estimates for all other alleles at the specific position, we filtered positions

that contained one ormore alleles with a BQ less than the empirical threshold unless the allele had a non-significant (i.e., less than 1 in

500) effect on heteroplasmy. In total, we called 44 high-quality variants across our TF1 (sub-)clones (Figure S1D) that were present at

a minimum of 2.5% heteroplasmy in at least one sample. Throughout the study, we observed a preponderance of C > T, T > C, G > A,

and A > Gmutations (transitions), consistent with previous reports (Ju et al., 2014; Ni et al., 2015; Yuan et al., 2017). Of note, we used

bulk ATAC-seq to nominate high-quality variants across three other hematopoietic cell lines (GM12878, K562, and Jurkat) and

observed 29-64 heteroplasmicmutations per line, suggesting our inferences in Figures 1, 2, and 3 would generalize to other cell lines.

Mitochondrial distance matrix
As input to the variance componentsmodels (Figure 1G), we computed amitochondrial relatednessmatrix Kmito = 1�D, whereD is a

symmetric, pairwise distance matrix whose elements encode the distance between pairs of cells or clones based on the differences

in their respective allele frequencies. We define D for pairs of observations i; j over high-quality variants x˛X using the matrix of allele
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frequencies ðAFÞ and coverage frequencies ðCÞ, such that only variants sufficiently well-covered (minimum # of reads at the position

> 100) are included. Explicitly, we define the mitochondrial distance between observations i; j using the distance di;j as follows:

di;j =

P
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��AFx;i � AFx;j

��q
� �1Cx;i > 100 � 1Cx;j > 100

�
P

x

�
1Cx;i > 100 � 1Cx;j > 100

�

where 1 is the indicator function. Intuitively, this representation ofm
itochondrial distance simultaneously accounts for variation in rare

heteroplasmy (through the square root transformation) and only compares pairs of cells by their high-confidence variants. We note

that the square root transformation yields a one-to-one mapping of allele frequencies and provides relative weight to variants whose

allele frequencies are very close to zero.

For the bulk ATAC-seq of TF1 (sub-)clones analyzed in Figure 1, all quality-controlled variants passed the coverage requirement;

however, the additional indicator functions for coverage were necessary for subsequent single cells experiments.

For the hierarchical clustering of the TF1 lineage cells, we used amodified mitochondrial distance metric computed from the Pear-

son correlation distance. Intuitively, this metric is less dependent on the absolute values of the variant heteroplasmy. We note that

while an ideal tree reconstruction algorithm would facilitate the inclusion of internal nodes, we found no such algorithms readily

available, asmost tree reconstruction approaches do not allow for internal observations. Further, we did not pursue the development

of such approaches here.

Variance components model
To determine the proportion of the variance of chromatin accessibility that could be explained by the mitochondrial lineage in each

peak, we performed a variance decomposition using a random effects model (Figure 1H). Briefly, the chromatin accessibility counts

measured from ATAC-seq for 91,607 accessibility peaks were summed, centered, and scaled for each sample. We then estimated

for each peak the proportion of variance explained due to the random variance component ðs2eÞand due to the variance component

from the sample-sample structure inferred by the mitochondrial genotype ðs2mÞ, using average information restricted maximum likeli-

hood (AIREML). Explicitly, our model for the variance of chromatin accessibility account for an individual peak is:

Peak Accessibility � N
�
0;s2

mKmito + s2
eI
�

and the proportion of the variance explained by the mitochondria
l structure then is the ratio of s2m over the total variation:

s2
m

s2
m + s2

e

The proportion of the variance explained by the mtDNA mutation
 substructure is shown for each peak in Figure S1G alongside an

analogous calculation, where the substructure is only defined by a binary indicator of clonal membership for pairs of samples.

Most Common Recent Ancestor (MRCA) analysis
To determine our ability to accurately reconstruct the experimental lineage in Figure 1 bymitochondrial mutations, we determined the

proportion of correctly identified Most-Recent Common Ancestors (MRCA) for trios of (sub-)clones, similar to an approach recently

reported by Biezuner et al. (Biezuner et al., 2016). For any given set of three samples in the predicted tree (e.g., A, C, and D; in

Figure S1E), three possible arrangements are possible: (1) A and C share an MRCA compared to D; (2) C and D share an MRCA

compared to A; or (3) A and D share anMRCA compared to C. Given the true experimental lineage tree (in this example, arrangement

2), we determined whether or not our reconstructed lineage correctly identified the MRCA. Thus, by chance, a random tree

reconstruction would be 33% accurate. Here, we distinguish comparisons within-clone (e.g., B,C,D in Figure S1E) or between clones

(e.g., A,C,D) and demonstrate that our tree reconstruction significantly outperforms what is expected by chance in both settings.

Clonal mixture deconvolution (TF1 clones)
To demonstrate that clonal mixtures can be deconvoluted, we mixed our second-generation clones in known proportions and in-

ferred these proportions from themitochondrial genotype of themixture. For two knownmixture fractions (Figure S1F), we genotyped

each mixed sample with bulk ATAC-seq and then used the second-generation allele frequencies to infer each mixture, by fitting a

support vector regression model to estimate the mixing proportions, in a manner analogous to CIBERSORT (Newman et al.,

2015). As shown in Figure S1F, the average deviation of the inferred and true mixing proportions are 1.7% and 3.0%, demonstrating

that a priori defined genotypes can be used to approximate the contributions of complex mixtures.

Comparison of scRNA-seq methods
To compare mitochondrial coverage with different scRNA-seq methods, we downloaded a dataset of 583 scRNA-seq profiles from

mouse embryonic stem cell (mESC) (Ziegenhain et al., 2017). Reads were aligned to the mm10 reference genome using STAR.

Per-base pair coverage estimates were computed for each single cell using reads uniquely mapping to the mitochondrial genome.
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To verify that heteroplasmic variants were expressed at a comparable frequency as these heteroplasmies in DNA, we downloaded

38 high-quality profiles, where both mitochondrial genome and transcriptome were available (Han et al., 2018). Reads from mtDNA

and RNAwere aligned as described above to the hg19 reference genome, using Bowtie2 and STAR, respectively, and heteroplasmic

allele frequencies were plotted for variants with at least 50 reads covering the locus in both RNA and DNA both with a minimum BQ

score of 20 in the same cell.

Comparison of scRNA-Seq, scATAC-Seq and scMito-Seq (TF1 clones)
To compare given single cell profiling methods to the corresponding bulk method or to other single cell and bulk methods, we

summed all raw allele counts for high-quality cells (minimum of 100Xmitochondrial genome coverage). We performed such compar-

isons for nine characterized, clone-specific heteroplamsic variants (Figure S2F) and for variants identified as RNA-specific (Fig-

ure 2D). We further plotted the allele frequency comparing the two technologies for heteroplasmic variants, revealing concordance

across all the technologies (Figure S2E).

Validation of clonal mutations in single cells using lentiviral barcoding
To detect barcodes in TF1 scRNA-seq libraries, we appended a 221 base pair ‘‘chromosome’’ to the standard STAR hg19 reference

genome where the 30bp random sequence was soft-masked. Custom Python scripts determined reads uniquely aligning to the len-

tiviral construct that overlapped the random 30bp barcode. From the 20mutations nominated in Figure 3C, a cell-cell distancemetric

was computed from the Pearson correlation of the square root of the heteroplasmy matrix. This metric was similarly used for the

MRCA analysis as described for Figure 1. For each pair of cells, we used the group designation from the lentiviral barcode assignment

as a binary classifier and the mitochondrial distance metric as a diagnostic metric of cell-cell similarly to compute receiver operating

characteristics.

CNV calling for lentivirally barcoded TF1 cells
Copy number variation (CNV) was determined using the InferCNV tool run using the default settings (Patel et al., 2014). We modified

the main script to return the cell-cell distance matrix computed before performing the default hierarchical clustering. This cell-cell

distance matrix (computed over the CNV bins) was used as input to our MRCA computation.

GTEx analyses
Raw .fastq files were downloaded from dbGAP as noted above for nearly 10,000 samples sequenced on Illumina Hi-Seq with 75bp

paired-end reads. We retained 8,820 samples belonging to one of 49 tissues that had at least 25 total samples, from individuals with

at least 10 tissues, and with mean mitochondrial genome coverage of 1000x. We define a ‘‘tissue specific mutation’’ (Figures 4D, 4F,

and 4G) for a givenmitochondrial variant if the variant is present at least at 3%heteroplasmy (ormore where indicated) in an individual

tissue but nomore than 0.5% (within ourmargin of error for bulk RNA-seq) in any of the other tissues for a specific donor.We removed

mutations that occurred within a given tissue in more than 10 individuals to exclude the possibility of tissue-specific mitochondrial

RNA-editing events. While the noise in the RNA-seq assay inherently leads to more false positives and less certainty in the hetero-

plasmy estimation, our procedure of comparing heteroplamsic values against other tissues within a donor provides a conservative

means toward identifying putative somatic mutations that arose during development or homeostasis.

To compute the expected number of pathogenic and damaging mutations (Figures S4E and S4F), we multiplied the number of loci

that were observed above a defined heteroplasmy threshold (e.g., 20%) by the rate at which damaging or pathogenic mutations

occur in the mitochondrial genome.

Dimensionality reduction using mRNA expression profiles or mitochondrial genotypes
We performed a t-stochastic neighbor embedding (t-SNE) of the cells by either their expression or mitochondrial genotype profiles

(Figures 5 and S5). First, we identified a set of 935 high quality scRNA-seq profiles that (1) have at least 500 genes detected, (2) had a

total count of at least 2,000 across expressed genes, and (3) had ameanmitochondrial genome coverage of at least 100x. For dimen-

sionality reduction by expression profiles, we first batch-corrected a log counts-per-million matrix of gene expression values using

sva (Leek et al., 2012) and used the top 10 principal components for our t-SNE. For the dimensionality reduction by mitochondrial

genotype profiles, we used all variants with a mean BQ score of 25 present at a heteroplasmy of at least 0.5% in our population

of cells and similarly computed t-SNE coordinates using the top 10 principal components of the heteroplasmy matrix. We observed

no significant batch effect in the mitochondrial allele frequencies.

Supervised identification of colony and cell-specific mutations in hematopoietic cells
To identify mutations that effectively separate individual colonies in donors 1 and 2 (Figures 5 and S5), we searched for mutations

present at a minimum of 80% of cells within a colony, at a minimum heteroplasmy of 5%, but are not present at greater than 5%

heteroplasmy in more than two cells from all the other colonies together.

To identify mutations that separate individual bulk ATAC colonies (donor 3 and 4), we searched for mutations that were present at a

heteroplasmy > 5% in a particular colony but absent (< 0.5% heteroplasmy) in all other colonies.
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To identify cell-specific mutations in FACS-sorted HSCs (donors 5, 6, and 7), we searched for mutations that were present at > 5%

heteroplasmy for a particular cell, but otherwise absent (< 0.5%) in all other cells for a specific donor.

Separation of clonal mixtures of CD34+ HSPCs
For the analysis of CD34+ HSPCs, we identified variants that had a mean BQ score of at least 20 for both the sum of single cells and

the bulk ATAC-seq and were detected in bulk at a heteroplasmy of at least 0.5%. This identified 14 for scRNA- (Figure S6A) and 16

high quality variants for scATAC-seq (Figure S6B).

Using these variants and cells passing filter (minimum average mitochondrial genome coverage of 100x), we performed a fuzzy

k-medoids clustering and assigned a cell to a cluster if it had an assignment probability greater than 95%and left it unassigned other-

wise.We identified 9 clusters for scATAC-seq and 10 for scRNA-seq that corresponded directly to one ormoremutations (Figures 6B

and 6C). While other cells showed evidence of mutations, these occurred at lower heteroplasmy values than the frequencies for cells

assigned to the group (Figures S6E and S6H).

Simulated density of assignment
To verify that our probabilistic cluster was within the range of expectation, we performed a simulation study by parameterizing attri-

butions of our mixing experiment (Figures S6C and S6D). Specifically, for each of the 30 input CD34+ cells, we simulated a proportion

of the specific cell in the final population pi; i˛f1;.;30g, using a Beta distribution:

pi � Betað1; 29Þ
In expectation, the proportion in the terminal cell populations w
ould be 1/30, consistent with the expectation of the draw from

the Beta distribution. From this vector of population proportions p, we simulate the number of cells N sampled from our single-

cell sampling using a multinomial distribution:

n � MultinomialðN;pÞ
whereN= 372 and 148 for the scRNA-Seq and scATAC-Seq, res
pectively. Thus, ni represents the number of cells that were derived

from a single original cell i: Next, we simulated whether cell i contained a mutation that could be detected and clustered in a group of

cells (r = 1). This was achieved using a Bernoulli draw for each cell:

ri =BernðqÞ
where q was estimated to be 0.5 based on our analyses in Figure
 5 for scRNA-seq. Finally, the total number of cells clustered (c, the

unit shown on Figures S6C and S6D) is computed from the following:

c=
X30
i =1

ri � ni
For both scATAC- and scRNA-seq, we computed c over 10,000 s
imulations each. Our observed number of cells clustered in Figures

6B and 6C fell comfortably within the 95% coverage interval for both scATAC- and scRNA-Seq (Figures S6C and S6D).

Analysis of colorectal cancer data
Bulk ATAC-seq and scRNA-seq libraries were aligned using bowtie2 and STAR as described above. We identified variants that had a

mean BQ score of at least 20 for both the sumof single cells and the bulk ATAC-seq andwere detected in bulk at a heteroplasmy of at

least 0.5%, yielding 12 high-quality variants. Clusters were defined using a similar procedure as described in the previous section.

With the exception of 15044 G > A, the highest heteroplasmy in the bulk healthy samples was 0.0009. In total, 12 high-confidence

clusters were identified with at least 2 cells. A t-SNE mapping of cells was rendered for the mRNA profiles as described above (Fig-

ures 7D–7F and S7A–S7C).

Dimensionality reduction of CML scRNA-seq data
To address spurious variants in scRNA-seq in the absence of a bulk DNA guide (Figure S6G), we hypothesized that using a more

stringent measure of quality, base alignment quality (BAQ) (Li, 2011), could facilitate the identification of fewer higher quality variants.

Indeed, we identified 242 high-quality variants that had a minimum BAQ score greater than 20 with a mean heteroplasmy of 0.5% in

the population of high quality cells (minimum mean mitochondrial genome coverage of 100x).

We performed a tSNE on the first 25 principal components from the z-score normalized heteroplasmy matrix using default param-

eters (perplexity = 30). We used a Mann-Whitney U-Test to identify variants that co-varied with annotated patient sub-phenotypes at

a significance of p < 10�3 within a given donor.
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Analysis of CML scRNA-seq data
Clustering of the scRNA-seq data for donor CML656 was performed using SC3 (Kiselev et al., 2017) on processed expression values

available through GEO accession GSE76312, with default parameters for clusters of size 2, 3, and 4. The data form the 29 cells in

cluster 1 were re-processed using STAR (Dobin et al., 2013) using parameters noted above, followed by differential expression

testing using limma-voom (Law et al., 2014). The lowest non-zero allele frequency of 4824 T > C for a cell in cluster 1 was 4%,

providing a clear basis for determining cells that were 4824 T > C + (that is, any cell with a non-zero allele frequency for 4824 T >

C were considered 4824 T > C +). In total, 14 cells in cluster 1 were negative for the mutation whereas 15 were positive, which served

to define categories for differential gene expression within cluster 1 cells.

Analysis of T lymphocyte scRNA-seq data
Raw .fastq files were downloaded from the European Genome-phenome Archive at the accession numbers noted in Table S5. Meta

data associated with each cell was further downloaded with the raw sequencing data, and included a definition of clones based on

TCR sequences inferred by TRACER (Stubbington et al., 2016). In instances where we observed heterogeneity in mitochondrial

mutations within a clonal marker (e.g., Figure 6F), we verified that TCR annotations were supported by > 100 reads as reported in

the meta data.

Preprocessing the AML scRNA-Seq dataset
For the AML datasets previously generated by 10X Genomics (Zheng et al., 2017b), cells from two patients (AML027 and AML035)

were analyzed for mitochondrial genotypes. Aligned and processed .bam files were downloaded from the 10X website (https://

support.10xgenomics.com/single-cell-gene-expression/datasets/) and further processed using custom Python scripts. Cell barco-

des associated with at least 200 reads uniquely aligning to the mitochondrial genome were considered for downstream analysis.

Barcodes were further filtered by requiring coverage by at least one read at two specific variants at mtDNA positions 3010 and

9698. We note that we did not observe a barcode that contained a read to support both alternate alleles (3010G > A and 9698T >

C). We determined that 4 out of 1,077 cells were derived from the recipient (Figure 7M), a higher estimate than in the previously

reported analysis performed with nuclear genome variants (reported exactly 0%) (Zheng et al., 2017b), though these four cells

were not included in the published analysis as they did not pass the author’s barcode/ transcriptome filters. We did not observe a

well-covered set of variants separating the donor/ recipient pair in the AML027 dataset, and did not further analyze it for mutations

but only for determining well-covered barcodes (Figures S7G and S7H).

DATA AND SOFTWARE AVAILABILITY

Accession codes
All sequencing data generated in this work is available on the gene expression omnibus (GEO) accession GEO: GSE115218, along

with tables that contain variant calls and heteroplasmy estimates for all primary data generated in this study.
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Figure S1. Detection of Mitochondrial Mutations with ATAC-Seq, Related to Figure 1
(A) Coverage of mitochondrial genome by bulk ATAC-Seq. The mitochondrial genome coverage per million reads (y axis) of each TF1 bulk ATAC-seq sample (x

axis), sorted by coverage and colored by parent clone as in Figure 1C.

(B) mtDNA mutations are consistently detected across replicate sequencing runs. Heteroplasmy (square root of allele frequency) for each high-confidence

mutation (x, y axis) in two technical replicates of the bulk TF1 sample. Pearson correlation coefficient between the replicates is indicated.

(legend continued on next page)



(C) Gaussian mixture model fit over per-base pair, per-allele base qualities. Shown is the distribution of per-base pair, per-allele base qualities scores (x axis), fit

with three Gaussian curves (colors) representing three mixture components: blue: high-confidence variants. Vertical dashed line: threshold for 99% probability of

belonging to the distribution of high confidence variants.

(D) Left: known lineage of TF1 clones annotated with sample IDs. Right: Hierarchical clustering of bulk TF1 clones by high confidencemtDNA variants. Shown are

the samples (columns) labeled by clone (color code as in Figure 1C, sample IDs are annotated at the bottom of the heatmap) and ordered by hierarchical

clustering (dendrogram, top) based on the square root of the allele frequency (color bar) of high-confidence variants (rows) identified in (C). Box indicates a

subclone-specific mutation as highlighted in Figure 1D (right). The square root transformation shows lower-frequency variants withmore intensity. The color bar is

shown with a square root transformation that maps to an allele frequency range of 0.0025-0.2. Position of each mutation and the base pair change is shown.

(E) Most recent common ancestor (MRCA) analysis to quantify lineage reconstruction accuracy. Schematic showing hypothetical clones where colors represent

arbitrary clonal populations. Trios are analyzed to determine the pair that has the MCRA, including between-clone (e.g., A, C, D) and a within-clone (e.g., B, C, D)

example.

(F) Deconvolution of synthetic samples. For each of two mixture experiments shown are the true proportions (‘‘Experiment’’) and inferred proportions (‘‘Inferred’’)

for each clone in the mixture, as well as the average deviation.

(G) Variance component model. Variance explained by the sample structure (y axis, %) for each chromatin accessibility peak (points, rank ordered by variance

explained), by the mitochondrial genotypes (red) and the clone ID (black).
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Figure S2. Assessment of Mitochondrial Mutations by Single-Cell Genomics, Related to Figure 2

(A and B) Coverage of the mitochondrial genome by six different scRNA-seq methods applied to mESCs. (A) Log2(coverage) along the mm10 mitochondrial

genome for each method. Arrows: a gene uniformly covered by full-length scRNA-seq (SMART-seq methods) but showing, as expected, increased coverage of

the 30 end of the transcribed gene in all other methods.

(B) Cumulative density plot of the mean base pair coverage for each method. Grey dashed line: median coverage. Bottom arrow: SMART-seq approaches cover

50% of bases at 30x or greater. Top arrow: CEL-seq2 and SCRB-seq cover 30 transcript ends more deeply.

(C) scMito-seq. Mitochondrial sequence specific primers are used for replication of circular mtDNA using the Phi29 polymerase.

(D and E) Performance of scATAC-, scRNA-, and scMito-seq. (D) Coverage of the mitochondrial genome per million sequence reads (y axis) for cells (bars) from

three primary clones (color as in Figure 1C) in each of the threemethods. Themedian cell coverage per million reads is noted. (E) Allele frequencies as ascertained

by the sum of reads from single cells from each method (y axis) compared to bulk ATAC-seq (x axis) for the same three clones as (D).

(F) Clones identified by genotype-based clustering across methods. Hierarchical clustering of all TF1 mitochondrial genotyping profiles (columns), including bulk

(black) and single cells (gray) from independent single cell assays (purple, yellow, maroon), across the three TF1 clones assayed (red, green, blue as in Figure 1C).

Color bar: Heteroplasmy frequency (%).
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Figure S3. mtDNA-Based Clone Assignment of Single Cells Agrees with Lentiviral Barcode Assignment, Related to Figure 3

(A) Lentiviral barcodes. 15 informative lentiviral barcodes (columns) were used to classify 158 cells to 11 barcode clusters (rows) of at least two cells per cluster.

Two 30-mer barcodes are highlighted at the bottom with a scheme of the lentiviral construct. Groups g01-04 are cells that contain two distinct barcodes

(multiplicity of infection > 1).

(B) Low correlation (Spearman r = 0.089) between barcode and mitochondrial coverage. Per-cell (dots) mitochondrial coverage (y axis) and lentiviral barcode

coverage (x axis). Colors: barcode clones as in in (A).

(C and D) Concordance between barcode and mtDNA clones. Receiver operating characteristic (ROC) and precision-recall (PR) curves using the Pearson

correlation distance as a metric for pairs of cells sharing barcodes. Area under the ROC (AUROC) and PR (AUPRC) are denoted.

(E) The same metrics (MRCA, AUROC, AUPRC) for mitochondrial and CNV-based distance predicting the same barcode identity in this experiment.

(F) Visualization of the scRNA-seq data, colored by barcode as in (A), using the UPGMA algorithm.
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Figure S4. Detection of Heteroplasmic Mitochondrial Mutations across Human Tissues, Related to Figure 4

(A) Mitochondrial genome coverage for three tissues (additional to those in Figure 4C). Inner circle: mitochondrial genome annotation; middle circular tracks:

mean coverage for testis (orange), skeletal muscle (black), and esophagus (purple); outer gray circle: coordinates of the mitochondrial genome.

(B) Tissue specificmutations. Beeswarm plot shows the allele frequency (y axis,%) of 372 tissue-specificmutationswith a heteroplasmy > 10%. Dots: mutation in

a tissue from a specific donor. Red: eight mutations with above 75% heteroplasmy. (C–F) Reduced number of protein damaging mutations than expected.

(C and D) Empirical distributions of tissue-specific allele frequencies (x axis, %) for variants annotated as (C) protein-damaging (red) or benign (gray) by

PolyPhen2, or (D) pathogenic (red) or neutral (gray) from APOGEE. Median heteroplasmy is noted and similar across all annotations (between 4%–5%).

(E and F) The number of damaging (E) and pathogenic (F) mutations (y axis) expected and observed at the tails of the distributions (> 20% heteroplasmy). The

number of expectedmutations are calculated as the product of the number of mutations and themarginal proportions in each category (STARMethods). Many of

the pathogenic mutations with higher heteroplasmy were found in transformed fibroblasts/ lymphocytes.
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Figure S5. Mitochondrial Mutations in Primary Hematopoietic Cells, Related to Figure 5

(A and B) Cell relations based on expression profiles or mitochondrial genotype. tSNE plots computed on expression profiles (top) and mitochondrial genotypes

(bottom) colored by (A) the number of genes detected (min. 5 counts) per cell, related to Figure 5A, or (B) the fold coverage of the mitochondrial genome per cell,

related to Figure 5A.

(legend continued on next page)



(C) Colony-specific mitochondrial mutations for donor 2. Shown are the allele frequencies of mutations (rows) that are found by supervised analysis as specific to

the cells (columns) in each colony (sorted by colony membership; colored bar on top). Position of each mutation and the base pair change is shown. Color bar:

Heteroplasmy frequency (%).

(D) Mixed colonies. Left: Image of colony 105, a mixture of two hematopoietic colonies as confirmed by imaging, gene expression data, and mtDNA genotypes.

Right: Scatterplots of the expression levels for a myeloid (MPO, x axis) and erythroid (HBB, y axis) for each cell (dot) in the colony, colored by the allele frequency

(color bar) of a heteroplasmic mutation identified only in the myeloid cells.

(E) Identification of potential contaminant cell in colony 112 based on expression andmtDNA genotype. Scatterplots as in (D) for the cells in colony 112. Arrow: cell

lacking the mitochondrial mutation identified in all other cells of this colony, also lacks HBB expression.

(F) Percentage of individual colonies separated based onmitochondrial mutations (y axis) for donor 1 and donor 2 for the scRNA-seq colony experiment in Figures

5H and S5C.

(G) Colony-specific mutations for donor 1 and donor 2 identified in Figures 5H and S5C are non-overlapping.

(H) Mitochondrial mutations identified through bulk ATAC-seq in primary hematopoietic colonies derived from individual CD34+ HSPCs separate 85% and 100%

of those colonies in each of two donors.

(I) Sorted phenotypic HSCs (CD34+CD38-CD45RA-CD90+) assayed with scATAC-seq for three additional donors show unique mutations in > 75% of cells.

(J) Mutations that distinguish individual HSCs are mostly non-overlapping between donors.
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Figure S6. Mitochondrial Mutations Identify Clonal Contributions in Polyclonal Mixtures of Human Cells, Related to Figure 6

(A) Allele frequencies for retainedmutations agree between scRNA-seq and bulk ATAC-seq. Allele frequencies determined by the sum of single cells from scRNA-

seq (y axis) and bulk ATAC-seq (x axis). Black – filtered; red – retained.

(B) Concordance of allele frequencies between single cell and bulk ATAC-seq. Variant allele frequencies determined by the sum of single cells from scATAC-seq

(y axis) and bulk ATAC-seq (y axis), which were retained for (red) or filtered from (black) further analysis.

(legend continued on next page)



(C and D) Number of cells classified by clustering by mitochondrial genotypes. Distribution of the number of cells clustered successfully by mitochondrial ge-

notypes across simulations (STAR Methods) using cell input from (C) scRNA-seq (compare to Figure 6B) or (D) scATAC-seq (compare to Figure 6C). Dotted line:

observed number of classified cells.

(E) Selected cluster-specific mutations (compare to Figure 6B). Boxplots show the distribution of heteroplasmy (%, y axis) of 8 selected cluster-specificmutations

in individual cells for each of 8 clusters, in the specific cluster for the mutation, and in the cells in all other clusters. Dots: individual cells. Dark bar indicates the

median single-cell heteroplasmy.

(F and G) Inclusion of scRNA-seq-specific mutations hampers successful clustering of cells. (F) Variant allele frequencies determined by the sum of single cells

from scRNA-seq (y axis) and bulk ATAC-seq (x axis). Red: RNA-seq specific mutations retained in the analysis in (G) but not in Figure 6B. (G) Hierarchical

clustering of cells from Figure 6B but when also including the RNA-only mutations from (F). Shown are the allele frequencies of retained heteroplasmic mutations

(rows) from scRNA-seq across cells (columns), where cells are sorted by unsupervised clustering. The color bar shown above the cells is the classification inferred

from Figure 6B, demonstrating the utility of the addition of the bulk sample for high confidence-variant filtering and exclusion of artifactual variants.

(H) Cluster specificmutations (compare to Figure 6C). Boxplots for eight selected cluster-specificmutations from each of eight clusters derived from the scATAC-

seq experiment. Individual cells are denoted by dots and colored by their cluster membership in the unsupervised analysis. Dots are individual single cells; dark

bar represents median heteroplasmy.
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Figure S7. Application of Mitochondrial Mutation Tracking in Human Cancer In Vivo, Related to Figure 7

(A–C) tSNE of clones identified from mitochondrial mutations in Figure 7B. The same coordinates are used to show (B) MUC2 expression and (C) SLC26A2

expression. Color bar: log2 counts per million.

(D) Separation of donors by mitochondrial genotype does not reflect coverage. tSNE plots of 2,145 single cells from 31 donors computed on mitochondrial

genotypes (as in Figure 7G), with each cell colored by total coverage (left) or the proportion of mitochondrial reads mapping to the mitochondrial tran-

scriptome (right).

(E and F) Changes in observed allele frequencies at different stage of disease. Boxplots show the distribution of allelic frequencies of a specific mutation at

different time points of disease/ sampling as indicated in Figures 7H and 7I. Dots are individual single cells; dark bar represents median heteroplasmy.

(G and H) Reduced mitochondrial coverage by 30 droplet based scRNA-seq. (G) The mitochondrial transcriptome coverage (y axis) for the top 500 barcodes and

cells (dots) from the 10X Chromium Single Cell 30 scRNA-Seq (left) and SMART-seq2 (right) datasets, respectively.

(H) Aggregate mitochondrial transcriptome coverage across cells in the 10X Chromium Single Cell 30 scRNA-seq dataset. Rounded edges: 30 ends of transcripts,
which are relatively well-covered (compare to Figure 2E).

(I) mtDNA transfer. Heteroplasmy in donor cell (x axis) versus recipient cell (y axis) from simulations assuming different rates (1, 5 and 10%; colored lines) of

horizontal mtDNA transfer from donor to recipient cell and fixed mtDNA content per cell. Dashed line: 5% heteroplasmy in the recipient cell.

(J) Near homoplasmy mutations. Heatmap of the allele frequency (color bar, %) of each of 164 mitochondrial mutations (rows) with near-homoplasmy in one or

more of the 2,145 single cells (columns) from 31 donors, sorted by donor annotations (color code on top, as in Figure 7G).
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