
Articles
https://doi.org/10.1038/s41587-021-00927-2

1Technology Innovation Lab, New York Genome Center, New York, NY, USA. 2Department of Pathology, Stanford University, Stanford, CA, USA. 3Broad 
Institute of MIT and Harvard, Cambridge, MA, USA. 4Division of Hematology / Oncology, Boston Children’s Hospital and Department of Pediatric 
Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA. 5Department of Experimental Immunology, Immunology Frontier 
Research Center, Osaka University, Osaka, Japan. 6Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, 
Japan. 7BioLegend, Inc., San Diego, CA, USA. 8Center for Genomics and Systems Biology, New York University, New York, NY, USA. 9New York Genome 
Center, New York, NY, USA. 10Laboratory of Human Immunology (Single Cell Immunology), Immunology Frontier Research Center, Osaka University, 
Osaka, Japan. 11Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Berlin Institute for Medical Systems Biology, Max Delbrück Center 
for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany. 12Howard Hughes Medical Institute, Chevy Chase, MD, USA. 13Department 
of Biology and Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA. 14Present address: Genentech, South San Francisco, CA, USA. 
15These authors contributed equally: Eleni P. Mimitou, Caleb A. Lareau, Kelvin Y. Chen. 16These authors jointly supervised this work: Shimon Sakaguchi,  
Leif S. Ludwig, Vijay G. Sankaran, Aviv Regev, Peter Smibert. ✉e-mail: smibertp@gmail.com

The recent explosion of technologies allowing detailed phe-
notypic measurements of single cells in high throughput has 
made the dissection of cell types and states in complex tissues 

widely accessible. Although measurement of single modalities has 
been highly informative for phenotyping, new techniques that allow 
detection of multiple modalities of information from single cells 
continue to be developed1–4.

Multimodal approaches can couple sparse comprehensive mea-
surements with more robust directed measurements that report 
on known cell types or states. For example, CITE-seq5,6 and RNA 
expression and protein sequencing (REAP-seq)7 couple the rela-
tively sparse single-cell RNA sequencing (scRNA-seq) signal with 
robust detection of highly abundant and well-characterized surface 
proteins, using oligo-labeled antibodies, and enable more robust cell 
type discrimination. However, whereas mRNA and protein are the 
products of gene expression, their detection does not suffice to deci-
pher underlying gene regulatory mechanisms.

Measurement of chromatin architecture allows detection of the 
earliest cellular states and responses to stimuli or developmental 

decisions8. In particular, scATAC-seq is a widely used method to 
obtain a genome-wide snapshot of chromatin accessibility, signa-
tures of active transcription and transcription factor (TF) bind-
ing9,10. Several single-cell methods developed to simultaneously 
capture mRNA with chromatin accessibility help correlate chro-
matin accessibility with gene expression and layer mRNA expres-
sion data on top of sparse ATAC-seq data8,11–13 but do not report on 
established protein markers that, in combination, precisely define 
cell types and cell states.

Here we report ASAP-seq, a method that enables robust detec-
tion of surface and intracellular proteins using oligo-labeled anti-
bodies together with scATAC-seq. ASAP-seq takes advantage of 
existing antibody reagents used for CITE-seq and related technolo-
gies, circumventing the need for specialized components. Notably, 
unlike co-assays of RNA and chromatin, where there is a tradeoff 
between enzymatic steps with different requirements, we leverage 
the enzymatic steps of the parent assay to detect multiple modalities 
and ensure high quality across both. ASAP-seq is compatible with 
quantification of intracellular proteins and mitochondrial DNA 
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(mtDNA) genotyping14,15. To demonstrate its utility, we applied 
ASAP-seq to the study of human hematopoiesis, where the combi-
nation of single-cell chromatin accessibility, surface marker profiles 
and mtDNA-based lineage tracing allowed us to resolve bone mar-
row heterogeneity. Separately, in a model of immune cell stimula-
tion, we combined ASAP-seq with CITE-seq to reveal the distinct 
layers of regulation of chromatin accessibility, mRNA levels and 
protein. We further applied ASAP-seq in a multiplexed T cell per-
turbation assay to disentangle chromatin and protein phenotypes 
associated with specific signaling pathways. Finally, we introduce 
DOGMA-seq, a variant of CITE-seq, allowing co-measurement 
of chromatin accessibility, gene expression and protein from the  
same cells.

Results
Development and validation of ASAP-seq. To develop ASAP-seq, 
we built on mtscATAC-seq14, a droplet-based scATAC-seq method 
that jointly profiles chromatin accessibility and mtDNA in fixed 
cells. We reasoned that the fixation and permeabilization before 

Tn5 transposition would also retain cell surface markers, enabling 
their detection with oligo-conjugated antibodies (Fig. 1a)5–7. To test 
this, we stained peripheral blood mononuclear cells (PBMCs) and 
control beads with fluorophore-labeled antibodies against CD19, 
CD11c and CD4 and performed flow cytometry at subsequent pro-
tocol steps (Extended Data Fig. 1a). Although permeabilization of 
fixed cells had a minimal effect on signal intensity, incubation at 
37 °C to mimic the transposition step led to a minor loss of intensity. 
Notably, the separation to background remained distinct on both 
cells with high (CD4 T cells) and moderate (CD4 on monocytes) 
levels of target proteins, suggesting sensitivity over a range of pro-
tein abundances.

We next devised a molecular bridging approach for protein 
detection that capitalizes on the large existing catalog of commercial 
antibody:oligo-conjugated products designed for scRNA-seq appli-
cations (TotalSeq products by BioLegend). In this approach, a short 
3′ blocked oligo serves as a template to extend the antibody tag 
during the initial amplification cycles. The extended product sub-
sequently anneals to the bead-derived barcoded oligo and becomes 
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Fig. 1 | ASAP-seq incorporates protein detection in scATAC-seq workflows. a, Schematic of the cell processing steps that allow retention and joint 
profiling of cell surface markers with chromatin accessibility. Cells are stained with oligo-conjugated antibodies before fixation, permeabilization and 
transposition with Tn5. b, In droplets, bridge oligos spiked into the barcoding mix promote templated extension of the antibody tags during the first cycle 
of amplification, rendering them complementary to bead-derived barcoding oligos. Extended antibody tags are subsequently barcoded together with the 
transposed chromatin fragments. c, Species mixing experiment using the Pre-SPRI approach; number of unique nuclear fragments (left) and protein tag 
counts (right) associated with each cell barcode. Points are colored based on species classification using ATAC-derived fragments (97.4% agreement by 
assignment; all but one discrepancy was an errant doublet versus singlet classification) d, TSS enrichment scores of mtscATAC-seq without (left) or with 
(right) concomitant protein tag capture. n indicates the number of cells profiled. e, UMAP of chromatin accessibility-based clustering of PBMCs stained 
with a nine-antibody panel, with selected markers highlighted. Color bar: protein tag CLR values. f, Cellular distribution of the two most common mtDNA 
mutations in the population. Thresholds for + were 5% heteroplasmy based on empirical density.
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linearly amplified along with accessible chromatin fragments  
(Fig. 1b and Extended Data Fig. 1b). As each antibody-derived oligo 
can be bridged only once, we introduced a unique bridging iden-
tifier (UBI) sequence via the bridge oligo for TotalSeq-A (BOA) 
to allow tag molecule counting when TotalSeq-A (TSA) products 
are used (Extended Data Fig. 1b). Alternate TotalSeq formats (for 
example, TotalSeq-B (TSB)) already contain UMI sequences16 and 
do not require UBIs in their bridge oligos (Extended Data Fig. 2a).

To benchmark ASAP-seq, we stained a mix of human (HEK-
293T) and mouse (NIH-3T3) cells with species-specific anti-CD29 
antibodies (Supplementary Table 1, ‘mixed species’ tab), followed 
by fixation, permeabilization and transposition before barcod-
ing in droplets in the presence of BOA (Methods). Species assign-
ment by either modality yielded consistent results, demonstrating 
the specificity of protein detection in this assay (Fig. 1c, Extended 
Data Fig. 1c and Methods). Two identical barcoding reactions were 
run in separate lanes to test tag library preparation using alternate 
input—10% of either the purified fragments after emulsion break-
age (Pre-SPRI) or the purified supernatant fraction after the SPRI 
purification step (Post-SPRI) (Methods). In both instances, we 
observed no substantial changes in ATAC fragment or protein tag 
complexity, suggesting that either fraction can be used to prepare 
the tag libraries (Extended Data Fig. 1d,e).

To perform additional benchmarking and optimization, 
we applied ASAP-seq to PBMCs stained with a TBNK panel 
(Supplementary Table 1, ‘TBNK’ tab) comprising nine major 
immune cell markers. The transcription start site (TSS) score 
and chromatin fragment complexity were similar to an unstained 
sample (Fig. 1d and Extended Data Fig. 1f). Furthermore, projec-
tion of antibody tag counts on cell types annotated by their chro-
matin accessibility profiles showed expected patterns, including 
mutual exclusivity of CD4 and CD8 expression in T cells, CD16 in 
natural killer (NK) cells and a subset of monocytes and CD14 in 
a non-overlapping set of monocytes, which generally corroborated 
chromatin activity scores at these loci (Fig. 1e and Extended Data 
Fig. 1h–j). As fixation and permeabilization conditions retain mito-
chondria14, we further recover 31% mtDNA reads, allowing us to 
profile mtDNA mutations jointly with protein levels and chromatin 
accessibility (Fig. 1f).

Finally, we further expanded the utility of ASAP-seq by incor-
porating Cell Hashing17,18. In Cell Hashing17,18 and related meth-
ods19–22, sample multiplexing is enabled by barcoded oligo tags 

(hashtags) that are attached by a variety of means to all cells of a 
specific sample, revealing both the sample identity and the pres-
ence of cross-sample multiplets. To demonstrate this, we stained 
PBMCs with four TSA hashing antibodies (Supplementary  
Table 1, ‘Hashing’ tab) and recovered 13,772 cells that were success-
fully demultiplexed in four distinct populations, with 1,396 detected 
doublets, consistent with the expected number of 1,138 doublets 
derived from a Poisson-based model (Extended Data Fig. 1g).

ASAP-seq is a modular toolkit. Next, we determined if UBIs, 
used in bridging TSA family antibody:oligo conjugates, perform 
similarly to UMIs (in TSB products). We designed 10-nt UBIs 
with complexity approaching or exceeding the UMI complexity 
commonly used in scRNA-seq23,24. To formally compare UMI ver-
sus UBI quantification, we co-stained PBMCs with a 1:1 ratio of 
TSA (UBI-based) and TSB (UMI-based) TBNK panel (Fig. 2a and 
Supplementary Table 1, ‘TBNK’ tab) and added both bridge oligos 
during the barcoding step (bridging schemes shown in Extended 
Data Figs. 1b and 2a). UBI-collapsed TSA counts showed good cor-
relation with UMI-collapsed TSB counts across all nine antibodies 
(Pearson’s r = 0.44–0.93, depending on antibody), verifying that the 
UBI can provide a reliable proxy for a UMI (Fig. 2b).

Although ASAP-seq directly extends mtscATAC-seq, we  
sought to modulate mtDNA enrichment. To address this, we  
compared the original OMNI-ATAC-seq lysis protocol previously 
shown to deplete mtDNA25, and currently recommended for the 
10x Genomics scATAC-seq assay, to the effects of lysis conditions 
for mtscATAC-seq14 (Methods). We fixed PBMCs stained with 
the TBNK panel (Fig. 2a), split into two aliquots, and lysed with 
the mild mtscATAC-seq conditions (referred to as low-loss lysis 
(LLL)) or with the stronger OMNI conditions. Although the lysis  
condition had a dramatic effect on mtDNA retention (Fig. 2c), we 
observed minimal effects on the distribution of UBI or UMI tag 
counts (Fig. 2d and Extended Data Fig. 2c). Moreover, the corre-
lations between UBI- and UMI-collapsed tag counts under stron-
ger permeabilization are similar to those in milder lysis conditions 
(Extended Data Fig. 2b; Pearson’s r = 0.38–0.96), albeit with slight 
improvement for most antibodies. Overall, we conclude that the 
surface marker retention in ASAP-seq allows reliable measure-
ment, irrespective of antibody:oligo reagent type or lysis conditions  
used, and without compromising ATAC-seq data (Extended Data 
Fig. 2d–f).
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ASAP-seq reveals cell state and cell lineage in bone marrow. The 
multimodal readout of ASAP-seq uniquely enables high-throughput 
profiling of epigenomic, proteomic and clonal features (through 
mtDNA) of cells from human tissue. We applied ASAP-seq to profile 
bone marrow mononuclear cells from a healthy 24-year-old donor, 
using a TSA antibody panel (n = 242 markers; Supplementary 
Table 1, ‘BM’ tab) and six hashtags. We permeabilized cells under 
LLL conditions to retain mtDNA fragments and retained 10,928 
high-quality cells (Fig. 3a and Methods). Dimensionality reduc-
tion and clustering of chromatin accessibility partitioned the cells 
into 21 distinct clusters spanning the major hematopoietic lineages 
(Fig. 3b and Supplementary Table 2). Notably, we did not remove 
predicted cell doublets as these were enriched for monocytic  

progenitors, a real cell state/type present at the expected frequencies 
(Extended Data Fig. 3a,b and Methods).

To identify protein markers associated with cell subsets, we used 
a random forest model trained on cluster labels using the scaled 
antibody tag abundances26 (Methods). The model rediscovered 
many classical hematopoietic lineage markers, including CD3, CD4 
and CD8 in lymphoid cells; CD371 (CLEC12A) and CD2 in myeloid 
cells; CD71 (TFRC) in erythroid cells; and CD38 in more mature 
progenitor cells (Fig. 3c,d and Extended Data Fig. 3c). Similarly, TF 
activities correlated with surface marker abundance as expected, 
including GATA1 in erythroid cells and CEBPA in myeloid pro-
genitors and monocytes (Extended Data Fig. 3d). Furthermore, we 
mapped our ASAP-seq data to a CITE-seq bone marrow reference27 
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and compared the cell populations defined by ATAC-seq only ver-
sus projected protein only, revealing that certain cell types poorly 
resolved in accessible chromatin space were readily resolved with 
the additional protein readout (Extended Data Fig. 3e).

Next, we used mtDNA genotypes for the clonal tracing of hema-
topoietic cells14,28,29. Using mgatk14, we detected 99 heteroplasmic 
mtDNA mutations that were enriched for expected nucleotide sub-
stitutions14 (Extended Data Fig. 3f). We used cell subset annotations 
to examine for putative lineage bias and detected lineage-restricted 
somatic mutations, such as 13,069 G>A and 13,711 G>A, that were 
relatively depleted in cells from the erythroid lineage but showed no 
predicted loss or gain of function (Fig. 3e,f and Extended Data Fig. 
3g,h). Furthermore, one highly heteroplasmic variant, 16,260 C>T, 

was present at ~40% heteroplasmy in the population yet was evenly 
distributed across the different lineages (Fig. 3e,f). Analysis of the 
donor mtDNA haplotype suggested that this mutation indeed arose 
somatically, potentially early during developmental hematopoiesis30.  
Overall, our observations support the utility of ASAP-seq to uncover 
mtDNA variants at single-cell resolution.

Dynamics of surface proteins during differentiation. We hypoth-
esized that the integration of accessible chromatin and protein tags 
via ASAP-seq could refine our understanding of marker dynamics 
during the continuous lineage commitment and differentiation in 
hematopoiesis31,32. To examine this, we charted trajectories from 
CD34+CD38− multipotent hematopoietic stem and progenitor cells 
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to differentiated monocytes (Fig. 3g) and erythroblasts (Extended 
Data Fig. 3j). Although markers associated with multipotent and 
other lineage progenitor cells, such as CD34 and CD49d (ITGA4), 
were downregulated early in the trajectory, monocyte markers, 
such as CD64 (FCGR1A) and CD31 (PECAM1), were quickly 
upregulated and persisted throughout differentiation (Fig. 3h and 
Supplementary Table 3). Conversely, CD11c (ITGAX) and CD371 
(CLEC12A) were upregulated only toward the end of the trajec-
tory. We also observed similar patterns of dynamic surface marker 
expression throughout erythroid differentiation (Extended Data 
Fig. 3k). Interestingly, among the proteins that were gained after 
commitment from the progenitor cluster, the increase in protein 
expression during monocyte differentiation was generally pre-
ceded by a gain of accessible chromatin at associated loci, which 
we corroborated in erythroid differentiation (Fig. 3i, Extended Data  
Fig. 3k–m and Methods). This result is consistent with a model 
where chromatin accessibility is the ‘first mover’ during differentia-
tion, and the resultant changes in transcription prime cells for dif-
ferentiation8. Taken together, our analyses showcase the versatility 
of ASAP-seq to measure multiple modalities of cell state alongside 
cell lineage, at greater surface marker diversity than in conventional 
cytometry approaches33.

ASAP-seq and CITE-seq reveal three levels of regulation. 
ASAP-seq and CITE-seq are companion single-cell assays that 
combine highly multiplexed protein measurements with profiling 
epigenomic or transcriptional landscapes, respectively. We reasoned 
that the shared protein features can help connect scRNA-seq and 
scATAC-seq datasets.

We simultaneously applied ASAP-seq and CITE-seq to  
profile epigenomic, transcriptomic and proteomic changes  
after T cell stimulation. PBMCs were split into two aliquots: one 
stimulated with anti-CD3/CD28 and IL-2 for 16 h, the other cul-
tured in the absence of stimulation (control), followed by stain-
ing of both with a TSA antibody panel (n = 227; Supplementary 
Table 1, ‘PBMC’ tab). Each of the samples was then split to run 
ASAP-seq and CITE-seq in parallel (Fig. 4a). We combined the 
RNA and ATAC profiles from the control and stimulated cells, 
revealing stimulation-dependent changes within T cells (Fig. 4b,c 
and Methods).

We next compared surface protein measurements by CITE-seq 
and ASAP-seq. As expected, we observed a decrease (~1.7–2×) in 
the tag molecule complexity in ASAP-seq compared to CITE-seq, 
consistent with the loss of signal observed in our initial flow cytom-
etry tests (Extended Data Figs. 4a and 1a and Methods). However, 
both methods were highly concordant in the mean signal detected 
for variable proteins within each cluster (Extended Data Fig. 4a, 
lower panels), as well as the change in antibody signal stimulation 
across the panel (Pearson’s r = 0.95; Fig. 4d), indicating that the 
cell processing-induced loss of sensitivity does not affect specific 
markers. Both assays detected substantial upregulation of canonical 
T cell activation markers, such as CD69, CD25, CD71 and CD278  

(refs. 34–36), at both the pseudo-bulk (Fig. 4d) and single-cell 
(Extended Data Fig. 4b,c) levels. Conversely, CD3 (protein 
log2FC = −3.5 and −4.5; P < 2.2 × 10−16, Wilcoxon rank-sum test 
for ASAP-seq protein abundance), CD28 (log2FC = −2.5; P < 2.2 × 
10−16) and T cell receptor (TCR) α/β (log2FC = −2.9; P < 2.2 × 10−16) 
antibody counts were noticeably reduced upon stimulation (Fig. 4d), 
likely due to internalization of the receptors upon triggering of the 
TCR complex37. An antibody prioritization approach using the ran-
dom forest model26 for ASAP-seq data verified that these markers 
were most associated with the stimulation (Extended Data Fig. 4d 
and Methods). Finally, embedding cells by protein abundance pro-
files intermixed cells profiled by the two assays, albeit with reduced 
separation of the activated T cell state (Fig. 4e and Extended Data 
Fig. 4e–g). Taken together, despite a lower tag complexity, ASAP-seq 
is similarly capable of capturing protein abundance associated with 
cell state and dynamic changes as measured with CITE-seq.

Next, we examined the dynamic changes in accessible chro-
matin, gene expression and protein abundance in stimulated 
versus control T cells. We detected 8,326 differential peaks, 943 
differentially expressed genes and 71 differentially abundant sur-
face proteins, consistent with previous unimodal analyses largely 
from bulk experiments38,39 (Fig. 4e and Methods). Of the 84 cases 
where all three modalities were detected in T cells, we observed 
heterogeneous responses in gene expression, chromatin accessibil-
ity and surface protein abundance (Fig. 4f,g and Supplementary  
Table 4). Specifically, CD3 and CD28 downregulation along with 
CD69 upregulation are striking on the protein level, evident tran-
scriptomically only for CD3E and CD69, but barely detectable at 
the chromatin level (Fig. 4h,i and Extended Data Fig. 4h). This can 
be due to true invariance in chromatin accessibility, such that gene 
expression is temporarily repressed without loss of accessibility, or 
to technical challenges—for example, given the higher sensitiv-
ity in capturing a modality with higher copy number (protein), as 
exemplified by CD4 and CD279 (Fig. 4j and Extended Data Fig. 4i). 
On the other hand, we observed RNA-specific changes in CD52 
where chromatin accessibility and protein abundance were rela-
tively constant pre- and post-stimulation (Extended Data Fig. 4j). 
Furthermore, as we activated T cells in a PBMC culture, we could 
observe secondary effects of the stimulations in other cell types, 
such as B cells, where CD25 and CD184 were altered (Extended 
Data Fig. 4k–m). Together, these analyses and anecdotes highlight 
the utility of combining ASAP-seq and CITE-seq to distinguish 
changes at three levels of gene regulation at single-cell resolution.

DOGMA-seq enables co-measurement of four modalities. While 
this work was under review, 10x Genomics released the ‘Multiome’ 
product that captures the transcriptome and chromatin accessibil-
ity from the same cells. We recognized that the mechanism of pro-
tein barcode detection used in our previously described CITE-seq 
method5, via the barcoded poly-T primer, would be compatible with 
the Multiome product and that our efforts to preserve cell surface 
antigens and mtDNA described for ASAP-seq would be transferable  

Fig. 5 | DoGMA-seq enables a high-quality capture of multiple modalities sensitive to biological changes. a, Schematic of the workflow and the modality 
capture enabled by DOGMA-seq. b, TSS enrichment scores of DOGMA-seq variations on the control PBMC data compared to a Multiome PBMC dataset 
released by 10x Genomics. c–f, Additional quality control metric comparisons for the indicated conditions: ATAC fragment complexity (c), % mtDNA in 
ATAC library (d), number of genes per cell detected (e) and protein tag complexity across the different cell preparations (f); median values are indicated. 
Box plots: center line, median; box limits, first and third quartiles; whiskers, 1.5× interquartile range. g, 3WNN UMAP embedding of control and stimulated 
PBMCs under the LLL condition. Box indicates the activated T cell clusters. h, Control PBMC clusters labeled after projection into the azimuth reference.  
i, 3WNN UMAPs of stimulated PBMCs highlighting the weight of each modality. j, Stimulation module family transcription factors, includingscore for each 
of the three modalities quantified in stimulated T cells. Each dot is a single cell with the stimulation score for each modality. Per-pair Pearson correlation of 
the data shown is reported. k, 3WNN UMAPs of control and stimulated PBMCs highlighting chromatin accessibility, mRNA expression and surface protein 
levels for CD45 and isoforms CD45RA and CD45RO. l, Identification of high-confidence heteroplasmic (red; n = 106) and homoplasmic (black; n = 43) 
variants using mgatk. m, Cellular distribution of m.10,761 T>C in the 3WNN for all cells; the arrow points to a subset of γ/δ and MAIT cells. Threshold for 
+ was 10% heteroplasmy based on empirical density. DC, dendritic cell; HSPC, hematopoietic stem and progenitor cell.
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to this kit. The ability to capture readouts of gene activity from 
chromatin accessibility to mRNA expression to protein levels spans 
the central dogma of gene regulation, leading us to refer to this 

method as DOGMA-seq (Methods). To benchmark DOGMA-seq, 
we repeated the PBMC stimulation experiment, as described in 
Fig. 4, under two permeabilization conditions. The first is based on 
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the mtDNA-retaining LLL preparation as performed in ASAP-seq 
with reduced amount of fixative; the second is based on a recently 
pre-printed condition using digitonin (DIG) permeabilization 
to allow detection of surface proteins alongside chromatin acces-
sibility40 (Fig. 5a). Using either preparation, we observed similar 
quality control metrics for TSS enrichment and genes detected 
compared to the standalone Multiome kit (Fig. 5b,e and Extended 
Data Fig. 5a,d), with the co-detection of mtDNA reads and pro-
tein tags being uniquely enabled by the LLL conditions (Fig. 5d,f 
and Extended Data Fig. 5c,e). Although LLL and DIG treatment 
led to similarly reduced accessible chromatin library complexity  
(Fig. 5c and Extended Data Fig. 5b), the overall complexity was 
similar to mtscATAC-seq and ASAP-seq (Extended Data Fig. 1f). 
We emphasize that the DIG and LLL treatments display differences 
with respect to mtDNA yield in ATAC libraries and complexity in 
protein tag libraries, which we attribute to the milder permeabili-
zation properties of DIG, not lysing mitochondria41, and improv-
ing preservation of the surface membrane and associated proteins  
(Fig. 5d,f and Extended Data Fig. 5c,e). As mitochondria in 
DIG-treated cells are ultimately lysed after droplet generation, we 
also observe a higher fraction of mtRNA, which are otherwise lost 
after LLL treatment and washes (Extended Data Fig. 5f). This is 
supported by the mitochondria-dependent increase in fraction of 
UMIs mapping to exons when using the DIG preparation (Extended 
Data Fig. 5g,h).

Next, we sought to chart biological variation in single cells. To 
achieve this, we extended the weighted nearest neighbor (WNN) 
approach27 (Methods). Focusing on the LLL-DOGMA data, we 
performed three-modality WNN (3WNN), yielding 25 clusters, 
including activated T cell clusters that were corroborated by healthy 
PBMC reference data projection (Fig. 5g,h). To chart the contribu-
tions of each modality, we visualized the relative modality contribu-
tion weight from the 3WNN clustering (Fig. 5i), observing a strong 
effect from the chromatin accessibility component in a subpopula-
tion of naive T cells. We further observed a protein marker-driven 
T cell cluster (cluster 17) that was delineated by CD138 (Extended 
Data Fig. 5i), which might mark an underappreciated, yet func-
tional, population42. Further analyses indicated that DOGMA-seq 
showed sensitivity in detecting the molecular changes in all three 
modalities during the stimulation, at specific loci (Extended Data 
Fig. 5j) and globally via activation module scores (Fig. 5j and 
Methods). We further verified the distinct isoforms of CD45 that 
can be delimited only via our additional surface protein readout 
(Fig. 5k). Additionally, we compared three variations of WNN by 
holding out each of the accessible chromatin, transcriptome and 
surface protein measurements (Extended Data Fig. 5k), noting 
that the CD138+ T cell cluster (cluster 17) was not recovered in the 
absence of protein information.

As a fourth modality, we verified an approximately uniform cov-
erage across the mitochondrial genome from this assay and a slight 
elevation of mean coverage in the stimulated cells (Extended Data 
Fig. 5l), consistent with increased mitochondrial biogenesis during 

T cell activation43. Application of mgatk14 revealed 106 heteroplas-
mic mutations (Fig. 5l), including an enrichment of specific nucleo-
tide substitutions (Extended Data Fig. 5m) as observed in our bone 
marrow experiment (Fig. 3). Of note, we observed 13 variants with 
evidence of clonal lineage bias (Kruskal–Wallis-adjusted P < 0.01), 
including m.10761 T>C that was present in a putative subclone 
of largely gamma/delta (γ/δ) and mucosal-associated invariant  
T (MAIT) cells (Fig. 5m). Overall, mutational heteroplasmy did not 
significantly change between conditions (Kolmogorov–Smirnov 
test, P = 0.83), consistent with the short culture time limiting clonal 
expansion (Extended Data Fig. 5n). Finally, application of 3WNN 
to DIG-DOGMA and LLL-DOGMA together verified that the two 
approaches could be analyzed concomitantly with a clear preserva-
tion of biological signal (Extended Data Fig. 5o), and peak-to-gene 
linkages were largely concordant at loci with both surface protein 
and transcriptome measured (Extended Data Fig. 5p and Methods). 
Overall, our results show how extending the number of distinct 
measurements from the Multiome kit facilitates the interrogation of 
biological systems with greater nuance.

Multiplexed CRISPR perturbations in primary T cells. As the 
benchmarking of our approaches revealed distinct chromatin and 
protein changes underlying T cell activation, we sought to refine 
some of the underlying mechanisms by targeted perturbations via an 
arrayed CRISPR–Cas9 screening strategy. To this end, naive human 
CD4+ T cells were stimulated with anti-CD3/CD28, rested and sub-
jected to CRISPR perturbations targeting single genes (CD3E, CD4, 
ZAP70 and NFKB2) or CD3E + CD4 (double knockout), followed 
by rest and re-stimulation (Extended Data Fig. 6a). Using a com-
bination of hashing antibodies, we multiplexed each perturbation 
before antibody panel staining (n = 37) and processing by ASAP-seq 
(Fig. 6a and Supplementary Tables 1 and 5). Demultiplexing by 
hashtag reads enabled high-confidence identification of 5,825 per-
turbed cells with a median yield of 1.47 × 104 fragments mapping to 
the nuclear genome (Extended Data Fig. 6b).

Cells perturbed by guide RNAs (gRNAs) targeting critical regula-
tors of TCR signal transduction (CD3E and ZAP70) had similar chro-
matin accessibility profiles (Fig. 6b). Moreover, these cells expressed 
characteristic markers of a resting state (for example, CD197 and 
CD62L), indicating a profound defect in TCR activation (Fig. 6c 
and Extended Data Fig. 6d). In contrast, cells with non-targeting 
(NTC) gRNAs or gRNAs targeting CD4 or NFKB2 clustered together 
and displayed high levels of classical T cell activation markers (for 
example, CD25, CD69 and CD137), indicating active TCR signaling. 
Notably, only cells with gRNAs targeting CD4 exhibited substantial 
reduction in CD4 expression, further validating the robustness of 
the workflow (Fig. 6c and Extended Data Fig. 6c).

We next inferred changes in gRNA-dependent TF activities 
using chromVAR44 and found that each perturbation had its pre-
dicted effect, despite varying targeting efficiencies (Fig. 6d–f and 
Extended Data Fig. 6e–g). As expected, depletion of CD3E resulted 
in a defective response to TCR re-stimulation and significantly 

Fig. 6 | Multiplexed CRISPR perturbations with ASAP-seq in primary human T cells. a, Schematic workflow for combinatorial multiplexing with 
ASAP-seq. CRISPR-edited cells are first stained with oligo-conjugated hashtag antibodies and then pooled for processing by ASAP-seq. gRNA identities 
are demultiplexed using hashing antibody counts. b, UMAP embedding of n = 5,825 single cells and their associated gRNAs. c, Heat map showing mean 
expression for 27 surface protein markers across gRNA perturbations in stimulated cells. d, Heat map representation of chromVAR bias-corrected TF 
motif deviation scores for the top 100 most variable TFs across perturbation conditions. Associated gRNA and donor information are color-coded and 
indicated at the top of the plot. e, Overlay on ASAP-seq UMAP of chromVAR TF motif deviations. The motif for the given TF is indicated at the top of 
the plot. f, Volcano plots showing TF motifs with significantly changed chromatin accessibility profiles between NTC cells and guides targeting CD3E 
and ZAP70 (FDR ≤ 0.05, chromVAR accessibility change ≥ 0.25). g. Scatter plot of mean gene activity scores for 22 individual gene loci plotted against 
CLR-normalized mean protein tag counts associated with each gRNA. Values are normalized against NTC cells. h, i, Genomic tracks of PDCD1 (encoding 
PD-1) (h) and IL2RA (encoding CD25) (i), indicating pseudo-bulk ATAC signal tracks across gRNAs with corresponding CLR-normalized protein abundance 
ridge plots. Differentially accessible regions are highlighted in red. Differentially accessible regions not overlapping CaRE enhancers are highlighted in blue 
(i), and the TSS is highlighted in green (i). NFKB2 sequence motif matches are indicated by *. DKO, double knockout; HTO, hashtag oligo.
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decreased accessibility in regions containing motifs of activator 
protein-1 (AP-1) family transcription factors, including c-JUN and 
BATF (median chromVAR accessibility loss, 10.24, and false discov-
ery rate (FDR) < 0.0001; median chromVAR accessibility loss, 6.96, 
and FDR < 0.0001, respectively) compared to NTCs. Additional 
altered TF motifs in CD3E-targeted cells included NFAT family TFs, 
consistent with their crucial roles in chromatin remodeling and 
transcriptional regulation after TCR activation45,46. Interestingly, 

disruption of NFKB2 led to an increase of accessibility for NFKB 
family motifs, which could be reflective of competitive dimeriza-
tion of p50 and p52 for common binding partners RELA and RELB  
(Fig. 6d and Extended Data Fig. 6f)47.

Although methodology pairing measurements of perturba-
tions and ATAC-seq profiles has enabled the dissection of molecu-
lar machinery governing cell state48, our approach uniquely allows  
queries of how chromatin changes might relate to protein  
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expression dynamics. To examine this, we compared acces-
sible chromatin scores with concomitant surface protein profil-
ing across each perturbation condition (Supplementary Table 5). 
Overall, perturbation-induced changes in surface protein expres-
sion were correlated with changes in chromatin status (r = 0.57 in 
proteins not targeted by a perturbation; Fig. 6g,h). For example, 
many stimulation-responsive genes (for example, CD25, CD134 
and CD279) were downregulated in both protein expression and  

chromatin accessibility in CD3E- and ZAP70-targeted cells (com-
pared to NTCs), largely mirroring our previous results (Figs. 4 and 5).  
Interestingly, we observed pronounced coordination between 
changes in protein expression and gene activity for CD357 and 
CD366 (centered log-ratio (CLR)-normalized mean protein tag 
difference of 0.84 and 0.66, respectively, between CD3E-targeted 
cells and NTCs; Extended Data Fig. 6h). This was not evident in 
our ASAP-seq PBMC stimulation experiment, where changes 
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in CD357 and CD366 protein levels were only modest, despite 
increased accessibility at associated stimulation-responsive enhanc-
ers (CLR-normalized mean protein tag difference of 0.18 and 0.17, 
respectively, between CD4 T cell stimulation and control), likely due 
to the shorter stimulation period.

Finally, as fine mapping of cis-regulatory elements has enhanced 
the capacity to uncover functional regulatory elements in dif-
ferent contexts49–52, we reasoned that our perturbation screening 
approach could offer similar biological insights in identifying 
stimulation-responsive accessible chromatin regions. Examining 
pseudo-bulk ATAC signal at the IL2RA locus, we found strong 
depletion of chromatin accessibility at select regions with a con-
comitant decrease in the expression of CD25 protein for cells tar-
geted by gRNAs against CD3E and ZAP70, suggesting a prerequisite 
of TCR stimulation in the activation of these putative enhancers 
(Fig. 6i). These affected enhancers largely overlapped the previously 
characterized IL2RA CRISPRa-responsive elements (CaREs)51. 
In particular, we observed marked accessibility changes overlap-
ping CaRE4, a validated TCR stimulation-responsive enhancer 
for IL2RA. Moreover, we observed a decrease in CD25 expression 
in cells perturbed by gRNAs targeting NFKB2, despite relatively 
unchanged chromatin accessibility and the presence of compat-
ible NFKB2 DNA-binding motifs within regulatory regions. These 
results suggest that, although NFKB2 does not actively regulate 
local chromatin accessibility at this locus, it might still play a role in 
coordinating and maintaining CD25 expression in activated T cells. 
Taken together, our integrated multimodal approach allows for the 
discovery of context-dependent coding and non-coding gene regu-
lation modules.

ASAP-seq enables the detection of intracellular proteins. We 
hypothesized that ASAP-seq could provide an opportunity to 
detect intracellular epitopes, which has been generally inacces-
sible via droplet-based scRNA-seq5–7. To examine this, we stained 
PBMCs with different conjugate families against extracellular and 
intracellular markers to allow independent amplification and tun-
able sequencing depth of the two tag libraries. We labeled cells 
with the TSA TBNK panel comprising extracellular surface mark-
ers, followed by fixation, permeabilization and staining with TSB 
antibodies directed against intracellular epitopes, ZAP70, perforin 
and granzyme B (Fig. 7a and Supplementary Table 1). Accessible 
chromatin profile-based clustering and distribution of protein tags 
for extracellular markers (Fig. 7b,c) was consistent with previous 
experiments and corresponding gene activity scores (Extended Data 
Figs. 1i,j and 7a,b), verifying that the detection of these modalities 
remained robust with intracellular staining.

The distribution of protein tags for intracellular proteins  
displayed expected patterns, with ZAP70 present in activated NK  
and T cells and perforin and granzyme B most prominent in 
NK cells and a subset of cytotoxic CD8+ T cells, and correlated  
with gene activity scores, ultimately validating the on-target activ-
ity for all three tested intracellular markers (Fig. 7c,d and Extended 
Data Fig. 7a,b).

To further assess the specificity of intracellular staining, we gen-
erated a series of targeted perturbations, including CD4, CD3E, 
ZAP70, CD28, MKI67, CTLA4, CD69, CD45, PDCD1 and IFNG 
(two gRNAs per gene; Extended Data Fig. 7c,d), encoded each by 
hashing, before pooling of cells and staining with a TSA antibody 
surface marker panel (n = 53). After fixation and permeabiliza-
tion, we stained with TSB antibodies including intracellular CD152 
(CTLA4) and nuclear Ki-67 (MKI67), both known to be upregulated 
upon TCR activation (Supplementary Table 1)53,54. After hashtag 
demultiplexing, we identified six scATAC-seq Louvain clusters and 
visualized 15,395 single-cell profiles (Fig. 7e).

Consistent with its role as a proliferation marker, Ki-67 protein  
expression was highly upregulated in stimulated cells (Fig. 7f)54.  

This was not observed in cells with perturbed TCR signaling  
and non-stimulated control cells. Separate measurements of 
CD152 pre-permeabilization (staining CD152 on the cell’s sur-
face) and post-permeabilization (co-staining internalized CD152) 
revealed substantial upregulation of intracellular CD152 in TCR 
signaling-competent cells (Fig. 7f). For cell surface-localized 
CD152, we observed a sparse signal that lacked the dynamic 
range observed in its intracellular staining counterpart, consis-
tent with previous reports on CD152 trafficking and localization 
(Fig. 7f,g)54,55. Notably, CTLA4- and MKI67-perturbed cells exhib-
ited marked reduction in protein expression of CD152 and Ki-67, 
respectively, highlighting the specificity of intracellular epitope 
detection in both the cytoplasm and nucleus.

Among TCR-activated cells (Louvain clusters 3–6), we observed 
variation in Ki-67 levels, most notably with low expression  
in clusters 5 and 6 (Fig. 7e,g). Cells in cluster 6 exhibited high 
levels of T cell activation markers (for example, CD69, granzyme 
B and CD223), consistent with an effector memory phenotype  
(Fig. 7h)56,57. We did not observe overrepresentation of 
MKI67-targeted cells in this population, suggesting that the  
effect is biological and not due to perturbation. At the chromatin 
level, we found increased accessibility at IFNG and GZMB loci in 
cluster 6, consistent with an activated effector phenotype (Extended 
Data Fig. 7e). Together, these data demonstrate how ASAP-seq 
enables intracellular protein detection to facilitate the nuanced 
annotation of biologically relevant immune phenotypes and  
cell states.

Discussion
Here we present ASAP-seq, a unique approach that enables 
the concomitant detection of protein abundance alongside 
transposase-accessible chromatin and mtDNA in thousands of 
single cells14,15. As most cell atlases to date have characterized the 
distinct transcriptomes of single cells in complex tissue, ASAP-seq 
provides a complementary multi-omic approach to map regula-
tory elements, protein abundances and clonal relationships. The 
ASAP-seq workflow is directly compatible with related multimodal 
assays that simultaneously measure protein and RNA5,6 (Fig. 4). 
Notably, our approach introduces a bridge oligo (Fig. 1) that enables 
the use of existing antibody conjugates, yielding an accessible and 
user-friendly protocol.

As a complement to our ASAP-seq assay, we describe an exten-
sion of CITE-seq to enable compatibility with the 10x Genomics 
Multiome product. The resulting trimodal assay, DOGMA-seq, 
enables measurement of chromatin accessibility, gene expres-
sion and protein levels in single cells, with optional detection of 
mtDNA genotypes. We expect future developments to mirror 
efforts and expand the functionality of ASAP-seq with respect to 
intracellular protein detection, localized transposition (for exam-
ple, CUT&Tag58–60) and detection of engineered perturbations61. 
We note that, while this work was under revision, a similar strat-
egy sharing several of the features of DOGMA-seq, referred to as 
TEA-seq, was posted as a preprint62.

By examining our multimodal readouts in native and perturbed 
hematopoietic cells, our analyses reveal distinct cellular program-
ming occurring in chromatin, transcriptional and post-translational 
regulation. In particular, we observe chromatin-based priming dur-
ing a monocyte developmental trajectory in bone marrow (Fig. 3). 
Conversely, during T cell activation, we observe a more heteroge-
neous response where changes in chromatin, RNA and protein abun-
dances become more uncoupled (Figs. 4 and 5). By further using 
CRISPR-based perturbations (Fig. 6), we disentangle downstream 
signaling of the TCR and reveal how ASAP-seq can enable the fine 
mapping of regulatory elements in various cell states that directly 
affect protein expression (for example, IL2RA). Future extensions of 
ASAP-seq that incorporate direct detection of gRNA sequences6,61,63 
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or encoded guide barcodes64–66 will further enable pooled screens at 
a substantially increased scale and phenotypic depth.

Furthermore, we show that ASAP-seq allows direct detection 
and quantification of cytoplasmic and nuclear intracellular markers 
(Fig. 7). Although other protocols have achieved concomitant quan-
tification of intracellular protein abundance and gene expression 
with plate-based methods67, using isolated nuclei68 or combining  
fluorescence-activated cell sorting (FACS)-based enrichment of 
cells with scRNA-seq69, ASAP-seq provides a more parsimonious 
approach to concomitant estimation of both surface and intracellu-
lar markers of whole cells alongside chromatin accessibility profiles 
on a widely used commercial platform. We anticipate the intracellu-
lar protein detection capacity of ASAP-seq to spur the development 
of large antibody panels targeting intracellular epitopes including 
signaling molecules, specific phospho-epitopes and TFs. In total, 
our methodological approach and analyses demonstrate the utility 
of ASAP-seq and DOGMA-seq as modular and powerful tools for 
charting the complex interplay of gene and protein regulatory layers 
in single cells.
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Methods
Protocols. See Protocol Exchange (doi pending), https://cite-seq.com/protocols/ or 
Supplementary Information for step-by-step ASAP-seq and DOGMA-seq protocols.

Cells. Cryopreserved healthy donor PBMCs and bone marrow cells were obtained 
from AllCells or Cellular Technology Limited and processed immediately after 
thawing. NIH-3T3 and HEK-293FT cells were maintained according to standard 
procedures in DMEM (Thermo Fisher Scientific) supplemented with 10% FBS 
(Thermo Fisher Scientific) at 37 °C with 5% CO2.

Cell staining with barcoded antibodies. TSA- and TSB-conjugated antibodies 
and panels were obtained from BioLegend (see Supplementary Table 1 for a list 
of antibodies, clones and barcodes used for ASAP-seq). Cells were stained with 
barcoded (and fluorophore-conjugated where indicated) antibodies as previously 
described for CITE-seq5,6. Briefly, approximately 1.5–2 million cells per sample 
were resuspended in 1× CITE-seq staining buffer (2% BSA and 0.01% Tween in 
PBS) and incubated for 10 min with Fc receptor block (TruStain FcX, BioLegend) 
to block Fc receptor-mediated binding. Subsequently, cells were incubated 
with indicated antibodies or panels for 30 min at 4 °C, as recommended by the 
manufacturer (BioLegend). After staining, cells were washed 3× by resuspension 
in 1× CITE-seq staining buffer followed by centrifugation (300g for 5 min at 4 °C) 
and supernatant exchange. After the final wash, cells were resuspended in PBS and 
subjected to fixation and permeabilization as described in the ‘Cell fixation and 
permeabilization’ section.

Intracellular staining was performed in fixed and permeabilized cells that 
were resuspended in Intracellular Staining Buffer (BioLegend, custom part no. 
900002577), with the addition of TruStain FcX and True-Stain Monocyte Blocker 
as recommended by the manufacturer (BioLegend).

Cell fixation and permeabilization for ASAP-seq. Cells were fixed in 1% 
formaldehyde (Thermo Fisher Scientific, no. 28906) in PBS for 10 min at room 
temperature and quenched with glycine solution to a final concentration of 
0.125 M, followed by washing twice in PBS via centrifugation at 400g for 5 min at 
4 °C. Cells were subsequently treated with the appropriate lysis buffer depending 
on downstream application. If mtDNA retention was desired, permeabilization was 
performed as described in mtscATAC-seq14 with 10 mM Tris-HCl pH 7.4, 10 mM 
NaCl, 3 mM MgCl2, 0.1% NP40 and 1% BSA (referred to as LLL conditions). 
When mtDNA depletion was desired, cells were lysed in 10 mM Tris-HCl pH 7.4, 
10 mM NaCl, 3 mM MgCl2, 0.1% NP40, 0.1% Tween 20, 0.01% DIG and 1% BSA 
(referred to as OMNI conditions). Permeabilization was performed on ice—3 min 
for primary cells and 5 min for cell lines—followed by adding 1 ml of chilled wash 
buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2 and 1% BSA) and 
inversion before centrifugation at 500g for 5 min at 4 °C. The supernatant was 
discarded, and cells were diluted in 1× diluted nuclei buffer (10x Genomics) and 
filtered through a 40-µm Flowmi cell strainer before counting using trypan blue 
and a Countess II FL Automated Cell Counter.

Transposition and barcoding for ASAP-seq. Cell were subsequently processed 
according to the Chromium Single Cell ATAC Solution user guide (versions 
CG000168 Rev D for v1 and CG000209 Rev D for v1.1, 10x Genomics) with the 
following modifications:

 1. During the barcoding reaction (Step 2.1), 0.5 μl of 1 μM bridge oligo was 
added to the barcoding mix. The sequences of the bridge oligos are: BOA 
(bridge oligo for TSA): TCGTCGGCAGCGTCAGATGTGTATAAGAGACA-
GNNNNNNNNNVTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT/3InvdT/ 
and BOB (bridge oligo for TSB): TCGTCGGCAGCGTCAGATGTGTATAAG
AGACAGTTGCTAGGACCGGCCTTAAAGC/3InvdT/.

 2. To facilitate bridge oligo annealing during GEM incubation (Step 2.5), a 
5-min incubation at 40 °C was added at the beginning of the amplification 
protocol (40 °C for 5 min, 72 °C for 5 min, 98 °C for 30 s; 12 cycles of 98 °C for 
10 s, 59 °C for 30 s and 72 °C for 1 min; ending with hold at 15 °C). This extra 
annealing step was not essential when using TSA products but increased  
efficiency in TSB tag capture.

 3. During silane bead elution (Step 3.1o), beads were eluted in 43.5 μl of elution 
solution I, and 3 μl was kept aside to use as input in the tag library polymerase 
chain reaction (PCR), whereas the remaining 40 μl was used to proceed with 
SPRI cleanup as the protocol describes. We reasoned that some tag fragments 
could stay in the bound fraction during the 1.2× SPRI separation, so, to maxi-
mize tag capture, we recommend to include a small portion (up to 10%) of 
the silane bead elution as input in the tag indexing reaction.

During SPRI cleanup (Step 3.2d), the supernatant was saved, and an additional 
0.8× reaction volume of SPRI beads (32 μl) was added to bring the ratio up to 
2.0×. Beads were washed twice with 80% ethanol and eluted in EB. This fraction 
can be combined with the few microliters left aside after the silane purification to 
be used as input in the protein tag indexing reaction, or either source can be used 
alone with minimal effect on tag complexity (Extended Data Fig. 1). PCR reactions 
were set up to generate the protein tag library (P5 and RPI-x primers for TSA 
conjugates, P5 and D7xx_s for TSB conjugates) and the hashtag library (P5 and 

D7xx_s) with the following program: 95 °C for 3 min; 14–16 cycles of 95 °C for 20 s, 
60 °C for 30 s and 72 °C for 20 s; followed by 72 °C for 5 min and ending with hold at 
4 °C. Example of an RPI-x primer (TruSeq Small RNA handle, present in TSA tags; 
‘x’ nucleotides represent a user-defined sample i nd ex ): C AA GC AG AA GA CG GC-
AT AC GA GA Tx xx xx xx xG TG AC TG GA GT TCCTTGGCACCCGAGAATTCCA. 
Example of a D7xx_s primer (TruSeq DNA handle, present in TSB tags or 
TSA h as hi ng): C AA GC AG AA GA CG GC AT AC GA GA Tx xx xx xx xG TG AC-
TGGAGTTCAGACGTGTGC. The final libraries were quantified using a Qubit 
dsDNA HS Assay Kit (Invitrogen) and a High Sensitivity DNA chip run on a 
Bioanalyzer 2100 system (Agilent).

Note: Both versions 1 and 1.1 of the scATAC kit were successfully used 
throughout this study, with no discernible differences with respect to protein  
tag detection.

Cell permeabilization for DOGMA-seq. After staining cells with the antibody 
panel as described above, cells were washed twice with CITE-seq buffer and FACS 
sorted to remove dead cells/debris and CD66b+ cells. Sorted cells were harvested 
and permeabilized under two conditions: one that includes fixation and preserves 
mtDNA in the ATAC-seq libraries (termed LLL, similarly to mtscATAC-seq14 
and ASAP-seq) and one that omits fixation and treats cells with 0.01% DIG, as 
described in ICICLE-seq40.

For LLL permeabilization, cells were first fixed with 0.1% formaldehyde 
(Thermo Fisher Scientific, no. 28906) in PBS/RI (PBS supplemented with 0.1% 
BSA and 0.2 U µl−1 of RNAse inhibitor) for 5 min at room temperature and 
quenched with glycine solution to a final concentration of 0.125 M, followed by 
washing twice in PBS/RI via centrifugation at 400g for 5 min at 4 °C. Fixed cells 
were subsequently treated with LLL lysis buffer (10 mM Tris-HCl pH 7.4, 10 mM 
NaCl, 3 mM MgCl2, 0.1% NP40, 1% BSA, 1 mM DTT and 2 U µl−1 of RNAse 
inhibitor) for 3 min on ice, followed by adding 1 ml of chilled LLL wash buffer 
(10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 1% BSA, 1 mM DTT and 
1 U µl−1 of RNAse inhibitor) and inversion before centrifugation at 500g for 
5 min at 4 °C. The supernatant was discarded, and cells were diluted in 1× diluted 
nuclei buffer supplemented with 1 mM DTT and 1 U µl−1 of RNAse inhibitor 
(as described by 10x Genomics), followed by counting using trypan blue and a 
Countess II FL Automated Cell Counter.

For DIG permeabilization, cells were treated with DIG lysis buffer (20 mM 
Tris-HCl pH 7.4, 150 mM NaCl, 3 mM MgCl2, 0.01% DIG and 2 U µl−1 of RNase 
inhibitor) for 5 min on ice, followed by adding 1 ml of chilled DIG wash buffer 
(20 mM Tris-HCl pH 7.4, 150 mM NaCl, 3 mM MgCl2 and 1 U µl−1 of RNAse 
inhibitor) and inversion before centrifugation at 500g for 5 min at 4 °C. The 
supernatant was discarded, and cells were resuspended in DIG wash buffer, followed 
by counting using trypan blue and a Countess II FL Automated Cell Counter.

Transposition and barcoding for DOGMA-seq. Cell were processed according 
to the Chromium Next GEM Single Cell Multiome ATAC + Gene Expression user 
guide (version CG000338 Rev A, 10x Genomics) with the following modifications:

 1. During pre-amplification PCR (Step 4.1), 1 μl of 0.2 μM ADT additive primer 
(CCTTGGCACCCGAGAATT*C*C) was spiked in the reaction mix.

 2. After pre-amplification PCR and SPRI cleanup (Step 4.3.k), the beads were 
eluted in 100 μl of EB buffer. Then, 25% of the pre-amplified sample was used 
as input for the ATAC library indexing, and 35% was used as input in the 
cDNA amplification reaction.

 3. To amplify and index protein tags, 35% of the pre-amplified sample was used 
in PCR reactions with SI-PCR (AATGATACGGCGACCACCGAGATCTA-
CACTCTTTCCCTACACGACGCTC) and RPI-x primers, with the following 
program: 95 °C for 3 min; ten cycles of 95 °C for 20 s, 60 °C for 30 s and 72 °C 
for 20 s; followed by 72 °C for 5 min and ending with hold at 4 °C. Example of 
an RPI-x primer (TruSeq Small RNA handle, present in TSA tags, ‘x’ nucleo-
tides present a user-defined sample index): CAAGCAGAAGACGGCATAC-
GAGATxxxxxxxxGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA. 
The final libraries were quantified using a Qubit dsDNA HS Assay Kit  
(Invitrogen) and a High Sensitivity DNA chip run on a Bioanalyzer 2100 
system (Agilent).

Flow cytometry. For flow cytometry analysis, PBMCs were washed in FACS buffer 
(2% FBS in PBS) before antibody staining using BV421-conjugated CD19 (HIB19, 
302233, BioLegend), CD3 (UCHT1, 300433, BioLegend), CD4 (RPA-T4, 300531, 
BioLegend) and CD11c (Bu15, 337225, BioLegend), each at a 1:100 dilution. After 
washing, fixation and permeabilization were conducted as described in the ‘Cell 
fixation and permeabilization’ section above, before cells were resuspended in 
nuclei dilution and ATAC buffer and incubated for 1 h at 37 °C in a thermocycler 
to mimic the Tn5 transposition step during (mt)scATAC-seq. Aliquots for flow 
cytometry analysis were processed at indicated stages as schematically depicted  
in Extended Data F ig . 1a. Bead staining was similarly performed using  
BD C  o m  pB  eads (                                                                                                                                           5                                         5              2  8  43, B  D B io sc ie nces) a t a  1 :1 00 a nt ib ody d il ut ion. A na ly-
sis was conducted on a BD Biosciences FACSAria III system. Data were analyzed 
using FlowJo software version 10.4.2. Briefly, lymphocytes and monocytes were 
separated using forward versus side scattering gating, followed by sub-gating on 
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the fluorophore-positive fraction (for stained cells/beads) or fluorophore-negative 
fraction (for unstained cells/beads). Fluorescence intensity histograms were 
produced from these gated fractions using the ‘Histogram’ function.

PBMC stimulation. Cryopreserved PBMCs were thawed and washed in complete 
medium (RPMI GlutaMAX, supplemented with 10% FCS and 50 IU ml−1 of 
IL-2). Cells were allowed to rest in complete medium for 30 min at 37 °C before 
filtering through a 70-μm cell strainer to remove aggregates. PBMC aliquots were 
split in half and resuspended to a final density of 1 × 106 per milliliter in either 
complete medium (unstimulated control) or complete medium supplemented 
with ImmunoCult Human CD3/CD28 T cell Activator (stimulated sample) 
according to manufacturer instructions (STEMCELL Technologies). Then, 200-μl 
cell suspension aliquots were deposited in a 96-well round-bottom plate and 
placed in a humidified 5% CO2 incubator at 37 °C for 16 h. Cells from respective 
wells were pooled, harvested, washed 2× with media and resuspended in 1 ml of 
media before filtering through a 70-µm cell strainer to remove cell aggregates. 
About 1 × 106 cells of each condition were then harvested and resuspended in 
100 μl of CITE-seq staining buffer in preparation for staining. We note that these 
stimulation conditions result in a depletion of monocytes due to their adherence to 
the plastic70.

Arrayed Cas9 ribonucleotide protein preparation and electroporation. 
Lyophilized CRISPR RNAs (crRNAs) and trans-activating CRISPR RNAs 
(tracrRNAs) (Integrated DNA Technologies) were reconstituted to a concentration 
of 400 µM and stored at −80 °C until use. crRNAs and tracrRNAs were mixed at 
a 1:1 vol/vol ratio, transferred into a 96-well plate and heated at 95 °C for 5 min, 
followed by incubation at room temperature for 15 min to complex the gRNAs. 
Then, 30 µg of Cas9 protein (Takara Bio, cat. no. Z2640N) was added to each 
well and mixed by gentle pipetting, followed by incubation at room temperature 
for 15 min. Complexed ribonucleotide proteins (RNPs) were then dispensed in 
a 96-well V-bottom plate at 12.7 µl per well. Cells were resuspended in Lonza 
P2 primary nucleofection buffer at 1 × 106 cells per 20 µl and added to the 
RNP-containing V-bottom plate. The mixture was gently mixed by pipetting and 
then transferred into a 16-well electroporation cuvette plate (Lonza, cat. no. V4XP-
2032) and pulsed with the EH100 program. Immediately after electroporation, 
100 µl of pre-warmed T cell culture medium was gently added to each well, 
and cells were incubated at 37 °C for 10 min. Cells were then transferred into 
96-well U-bottom plates for culture at 1 × 106 cells per milliliter, supplemented 
with 500 IU ml−1 of IL-2. A list of all crRNAs used in this study can be found in 
Supplementary Table 5.

Multiplexed perturbation workflow. Primary human CD4+ T cells were enriched 
by magnetic negative selection using the human CD4+ T Cell Isolation Kit 
(Miltenyi Biotec, cat. no. 130-096-533) as per manufacturer instructions. Cells were 
then stained, and naive CD4 T cells were sorted on a BD FACSAria SORP system 
on the basis of CD4 and CD45RA expression. After isolation, cells were cultured 
in T cell culture medium consisting of RPMI with 10% FBS, 10 mM HEPES, 2 mM 
GlutaMAX (Gibco, cat. no. 35050-061), 1× MEM non-essential amino acids 
(Gibco, cat. no. 11140-050), 1 mM sodium pyruvate, 55 µM 2-mercaptoethanol and 
100 IU ml−1 of IL-2 at a density of 1 × 106 cells per milliliter and stimulated with 
anti-human CD3/CD28 Dynabeads (Thermo Fisher Scientific, cat. no. 11131D) 
at a 1:1 cells-to-beads ratio. Seventy-two hours after stimulation (Day 3), beads 
were removed, and cells were rested in media containing IL-2 for expansion, 
while maintaining at a density of 1 × 106 cells per milliliter. On Day 7, cells were 
electroporated with Cas9 RNP complexes. After electroporation, cells were 
cultured in media with 500 IU ml−1 of IL-2 and split regularly to maintain a density 
of 1 × 106 cells per milliliter. On Day 15, cells were re-stimulated with anti-human 
CD3/CD28 Dynabeads (Thermo Fisher Scientific, cat. no. 11132D), supplemented 
with 100 IU ml−1 of IL-2. Seventy-two hours later, beads were removed, and cells 
for each condition were stained and washed as described above with a combination 
of two specific TSA hashtag antibodies (0.25–0.5 µg per antibody). Live cells were 
enriched and pooled by cell sorting on a BD FACSAria SORP and then processed 
as per the ASAP-seq protocol described above using OMNI lysis conditions.

Next-generation sequencing of DNA amplicons. Next-generation sequencing 
of gDNA was performed essentially as previously described71. Cells transfected 
with Cas9 were harvested 8 d after electroporation, enriched for live cells by 
cell sorting on a BD FACSAria SORP and then processed for gDNA extraction 
using the DNeasy Blood & Tissue Kit (Qiagen, cat. no. 69504) following the 
manufacturer’s instructions. Genomic sites of interest were first amplified by PCR 
with Phusion High-Fidelity DNA Polymerase (NEB) using gene-specific primers 
(primer sequences are listed in Supplementary Table 5). A second round of PCR 
was performed using 1 µl of product of the first PCR reaction to barcode the 
samples for next-generation sequencing. PCR products of the barcoded reaction 
were verified by running on agarose gel and then extracted using the MinElute Gel 
Extraction Kit (Qiagen, cat. no. 28604) as per manufacturer recommendations with 
a final elution volume of 30 µl in EB buffer. Amplicon libraries were sequenced 
single ended 1 × 150 bp on an Illumina NextSeq machine. After demultiplexing, 
FASTQ files were analyzed using CRISPResso2 (ref. 72).

Sequencing data pre-processing. Raw sequencing data for both scATAC-seq and 
antibody tag libraries were demultiplexed using cellranger-ATAC mkfastq. For the 
ATAC data, sequencing reads for all libraries were aligned to the hg38 or hg38/
mm10 reference genomes using cellranger-ATAC count. To eliminate barcode 
multiplets73, all libraries were processed with Cell Ranger ATAC v1.2, which uses 
shared Tn5 transposition events to identify and remove barcodes with low tag 
abundance. Protein tag abundances were estimated using the kallisto, bustools 
and kite frameworks74,75. To make the protein tag reads compatible with the 
kallisto framework processing, we developed an accessory script, ASAP_to_kite.
py, that converts FASTQ files into a format similar to the 10x scRNA-seq format, 
enabling tag abundance quantification. For CITE-seq data, raw sequencing reads 
were aligned using Cell Ranger version 3 to the hg38 reference genome. For 
DOGMA-seq analyses, raw sequencing reads were processed using Cell Ranger 
ARC (v1.0) for ATAC and RNA using a modified reference genome with mtDNA 
mapping regions masked14. Tag abundances for all experiments were computed 
directly using the kallisto, bustools and kite frameworks74,75.

Analysis of species mixing experiment. Cells that passed the Cell Ranger ATAC 
knee call were assigned as putative human cells when at least 100 fragments 
overlapped accessibility peaks in the human reference genome and putative mouse 
for at least 100 fragments in peaks in the murine reference genome. Similarly, cells 
were annotated as putative mouse or human cells based on protein abundance 
based on a minimum count of 100 for human CD29 and 50 for mouse CD29. 
Doublets were assigned for cells that consisted of less than 95% (ATAC; fragments 
in peaks) or 90% (protein; CD29 abundance) of the corresponding molecule. 
All thresholds were determined after evaluation of empirical densities of these 
measurements. The percent agreement between the multimodal assays was 
determined using cells that had corresponding labels (mouse and human doublet), 
which was 97.4% for the pre-SPRI experiment and 97.1% for the post-SPRI 
experiment. For each experiment, only one cell was observed that was annotated as 
mouse in one modality and human in the other; the rest of the discrepancies were 
due to edge cases associated with doublet assignments.

Complexity analyses. For both protein tag and chromatin complexity estimations, 
we used the number of unique and duplicate fragments as part of the Cell Ranger 
ATAC (chromatin) and bustools (tag) output as inputs into the Lander–Waterman 
equation76, which estimates the total number of unique molecules present given 
these two measurements. For chromatin, we used the ‘total’ and ‘passed_filters’ 
columns from the singlecell.csv file. For the tag libraries, we converted the 
corrected bustools file into a TSV file to manually assign and de-duplicate reads 
based on error-corrected barcode, UMI/UBI and feature assignments. For species 
mixing experiments, comparisons were performed by selecting the top 1,000 cells 
ranked by library complexity per condition per species to minimize differences due 
to variable cell yield (Extended Data Fig. 1d,e).

Resting PBMC analyses. For all analyses in Figs. 1–3, gene activity scores, cell 
clusters and reduced dimension representations were computed using ArchR77 
with the default workflow. Visualizations of gene activity scores and protein tag 
abundances were performed using unsmoothed values after CLR normalization 
for the protein tags. From the cell hashing experiment (Extended Data Fig. 1g), 
we assigned putative cell doublet identities using HTODemux17 for all barcodes 
passing the Cell Ranger ATAC knee call. Heteroplasmic mtDNA mutations were 
determined using the mgatk pipeline and variant calling parameters as previously 
described14. The two mutations shown in Fig. 1f were selected as they had the 
highest mean allele frequency among high-confidence heteroplasmic mutations. 
Violin plots depicting the proportion of mtDNA fragments (Fig. 2c) and tag 
abundances (Fig. 2d and Extended Data Fig. 2c) were plotted after removing the 
top 1% of barcodes from the Cell Ranger ATAC knee called for each value to 
minimize the visual effect of artifacts, such as cell doublets.

Bone marrow mononuclear cell analyses. We identified high-quality cells that 
satisfy three criteria: (1) minimum TSS score >4 and 1,000 fragments from 
ArchR77; (2) are not doublets based on hashtag oligos/HTODemux17; and (3) have 
fewer than 10,000 total tags or 50 tags in rat antibodies (cutoffs inferred from 
density distributions). These steps resulted in 10,928 cells. We then performed 
latent semantic indexing (LSI), uniform manifold approximation and projection 
(UMAP) and clustering with ArchR using default settings, which includes calls to 
the Seurat FindClusters function for Louvain cluster determination on the shared 
nearest neighbors graph77. Annotations of cellular protein tags were performed 
using CLR-normalized counts among these barcodes. Tag importance was 
determined after fitting a random forest model using the chromatin-derived cluster 
labels as outcomes and scaled, CLR-normalized protein tag abundances as input 
features, an approach inspired by the CiteFuse workflow26.

Monocytic and erythroid pseudotime was determined using the 
semi-supervised functionality in ArchR77. Protein tag/pseudotime heat maps were 
computed by dividing cells into 100 bins, computing means and then performing a 
rolling average over 11 consecutive bins as implemented in ArchR77. The subset of 
proteins shown for each lineage were selected such that (1) the mean scaled protein 
tag value exceeded 1 across cells in the trajectory, and (2) the ratio of means 
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For the DOGMA-seq analyses, we first performed cell filtering on each 
modality, requiring cells to have high-quality measurements for all modalities 
(Online Code). To perform 3WNN dimensionality reduction, we first ran 
Harmony82 on the linear components for each reduction with the stimulation/
control status as the covariate. Next, we used the FindMultiModalNeighbors 
function in Seurat version 4 (ref. 27) using the first 30 Harmony-adjusted 
components for all three modalities (although excluding the first scATAC 
component due to correlation with sequencing depth). To examine the effect 
of each modality, we computed the adjusted Rand index per pair of modalities 
(Extended Data Fig. 5k) on clusters defined from the default FindClusters 
execution of the FindMultiModalNeighbors function for two modalities. To 
determine a per-cell, per-modality activation score, we used the AddModuleScore 
and AddChromatinModule functions for the top features upregulated in the 
stimulation from the Fig. 4 ASAP-seq/CITE-seq experiment (top 2,000 peaks; top 
1,000 genes; top 20 proteins). Heteroplasmic and homoplasmic mtDNA mutations 
were determined using the mgatk pipeline and variant calling parameters as 
previously described14. Putative lineage-biased variants were again identified using 
a per-mutation Kruskal–Wallis test of association.

Multiplexed perturbation analyses. We first de-noised the hashtag count matrix 
using dsb84, and, then, we assigned perturbation identity using HTODemux17. 
Donor ID per cell was further inferred using popscle, which extends the demuxlet 
toolkit85. High-quality cells were determined based on quality control criteria using 
the Signac79 workflow, focusing on high-quality cells to maximize the inference of 
the CRISPR perturbations. Subsequently, these quality-controlled cells were used 
in generating LSI dimensions and the UMAP embedding using ArchR with default 
settings77. TF accessibility deviation scores were computed using chromVAR with 
default settings for known human TF motifs, including the inference of the top 100 
most variable44. Downstream analyses of protein tag abundances were performed 
on CLR-normalized tag abundances. NFKB-compatible motifs were discovered 
in chromatin accessibility peaks using the motifmatchr framework as part of the 
chromVAR44 suite of tools. Pseudo-bulk genomic loci tracks were generated by 
first subsetting gRNA-specific cell barcode reads using sinto (https://github.com/
timoast/sinto), followed by processing with MACS2 (ref. 86) under the  
options -B --no model, --extsize 150, --shift 75, --SPMR.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data are available at the Gene Expression Omnibus under accession number 
GSE156478.

Code availability
Custom code to reproduce all analyses and figures is available at https://github.
com/caleblareau/asap_reproducibility.
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between cells included and excluded in the trajectory exceeded 1. These filtering 
steps for included proteins were incorporated to minimize the contribution of 
factors not specifically expressed in these differentiation trajectories. The paired 
gene score heat maps were computed using the same procedure but using the 
single-cell, unsmoothed gene activity scores. Finally, we further restricted the set of 
genes for the comparison of max protein tag and max gene activity score (Fig. 3i)  
to genes where the protein peaked after 0.25 in the pseudotime directory to 
eliminate factors associated with multipotent or erythroid-biased progenitors.

Among the cells passing accessible chromatin and protein quality control, 6,797 
had a minimum 10× mtDNA coverage, which were considered for downstream 
mutation analysis. Heteroplasmic mtDNA mutations were determined using the 
mgatk pipeline and variant calling parameters as previously described14. Putative 
lineage-biased variants were identified using a per-mutation Kruskal–Wallis test 
of association between heteroplasmy and cell lineage, which were assigned to 
individual cells based on chromatin clusters (Supplementary Table 2).

Analysis of PBMC stimulation experiments. Control and stimulated CITE-seq 
cells were filtered using the following criteria: predicted singlets using Scrublet78, 
maximum 10% mtRNA reads and minimum 500 genes detected and minimum 
1,000 total UMIs observed. Cells were further filtered out if they had excess 
abundance of total protein tags (>25,000 or >30,000 in control and stimulated 
conditions, respectively) or tags measured from the rat isotype controls (>55 
or >65 in the control and stimulated, respectively). Similarly, we identified 
high-quality cells from the ASAP-seq dataset such that each cell had a TSS score 
exceeding 4 and a minimum of 1,000 fragments. Cells were further filtered out 
if they had excess abundance of total protein tags (>25,000 in either condition) 
or tags measured from the rat isotype controls (>75 in either condition). All 
thresholds for both the ASAP-seq and CITE-seq filtering were determined by 
evaluating the per-cell empirical density.

We performed two-stage data integration for the ASAP-seq and CITE-seq 
datasets to preserve the biological effect of the stimulation and residualize 
differences between the RNA and ATAC assays. First, we created a union of 
variable genes from the CITE-seq stimulated and control datasets along with genes 
whose proteins were measured as part of the antibody panel. Using these ~2,700 
genes, we performed canonical correlation analysis (CCA) between the stimulated 
ASAP-seq (gene scores computed from Signac79) and CITE-seq (RNA abundance) 
datasets and a second round of CCA between the control ASAP-seq and CITE-seq 
datasets80. For both datasets, we imputed RNA expression for the ASAP-seq objects 
using transfer anchors as described in Seurat version 3 (ref. 81). In RNA space for 
these two merged objects, we performed principal component analysis (PCA), 
before using Harmony to integrate the stimulated and control integrated datasets82. 
A final dimensionality reduction and clustering using Harmony components 
was performed to summarize both modalities (ASAP-seq and CITE-seq) and 
both biological conditions (stimulated and control) in one setting. Finally, the 
embedding and clustering of ASAP-seq and CITE-seq based on protein tag 
abundances was performed using the 100 most variable features across the merged 
ASAP-seq and CITE-seq datasets as inputs to PCA and then Harmony82 to account 
for the technology and stimulation status as two group variables.

In determining the relative changes among chromatin accessibility, RNA and 
protein abundance between the stimulated and unstimulated conditions, we generated 
counts per million-normalized pseudo-bulk abundances, which were used to 
determine the log2 fold changes. Although these measures were computed for both the 
B cell and T cell clusters separately, we note that many changes in the B cell population 
mirrored that of the T cells, which we attributed to low-frequency cell doublets that 
persisted even after our computational filtering. This inference was based on the 
presence of markers such as CD4 and CD8 appearing in the B cell clusters, which are 
markers restricted to T cells and largely unchanged in the stimulation.

Separately, the numbers of differential peaks, genes and proteins were 
computed using a per-peak permutation test9, the edgeRQLFDetRate for 
differential gene expression83 and a Mann–Whitney test for the CLR protein 
abundances. The number of significant differential features (Fig. 4) was determined 
using consistent thresholds of a Benjamini–Hochberg-adjusted P value of 0.01 and 
a minimum magnitude of log2 change exceeding 0.5. The proportion of differential 
features was computed out of 52,551 peaks, 10,533 genes and 227 proteins. For 
accessibility peaks and genes, the universe of those tested were selected based on a 
mean count per million exceeding 2 across the stimulated and control samples. For 
the proteins, none of the 71 differentially expressed markers using these criteria 
was the rat isotype antibodies (known negative controls).

Tag importance (Extended Data Fig. 4d) for either the stimulation or cluster 
identities was determined by fitting two random forest models to (1) the cluster 
labels and (2) the experimental control/stimulation conditions. Again, the scaled, 
CLR-normalized protein tag abundances were used as input features, an approach 
inspired by the CiteFuse w or kf lo ws  26.

UMAPs showcasing changes in chromatin accessibility, RNA and protein 
abundance were consistently displayed using the 2nd and 98th percentiles as 
minimum and maximum values on the color scale. Cells depicted were displayed in 
random order. Furthermore, only cells where the modality was directly measured 
(that is, chromatin accessibility: ASAP-seq; RNA: CITE-seq; protein: ASAP-seq 
and CITE-seq) were displayed, and no gene smoothing was applied in any display.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Additional technical and computational validation of ASAP-seq workflows. a. PBMCs and compensation beads were stained with 
fluorophore-conjugated antibodies and subjected to the ASAP-seq workflow with samples withdrawn at the indicated steps and assessed for fluorophore 
intensity by flow cytometry. CD19 (staining B cells), CD11c (dendritic cells) and CD4 (lymphocytes and monocytes) signal on fixed cells is hardly affected 
by permeabilization alone, but after the 37 °C incubation for 1 h to mimic the Tn5 transposition reaction, some signal reduction is observed. b. Barcoding 
scheme of TSA tags using the bridge oligo for TotalSeqTM-A (BOA). TSA tags do not contain UMIs, so to allow molecule counting, UBIs (N9V) are 
incorporated via the bridge oligo. c. Species mixing experiment as in Fig. 1c, using the Post-SPRI approach for tag recovery. Points are colored based on 
species classification using ATAC fragments. d. ATAC library complexity and TSS enrichment for fragments from each species under the two protein-tag 
library approaches. e. Comparison of protein tag complexity between libraries prepared using the pre- and post-SPRI approach. f. Comparison of ATAC 
library complexity between mtscATAC-seq and ASAP-seq. Boxplots: center line, median; box limits, first and third quartiles; whiskers, 1.5× interquartile 
range. g. Two-dimensional embedding of the PBMC hashing data using t-SNE. The four major clusters (black) correspond to the four hashing antibodies 
used to stain the PBMCs. 13,772 cells were recovered and 1,396 doublets (red) were detected. h. UMAP embedding resolving PBMC cell types based on 
chromatin accessibility for cells processed by mtscATAC-seq and ASAP-seq. Data for the two different samples were processed together using cell  
ranger-atac aggr before dimensionality reduction. i,j. Selected protein markers (i) and corresponding gene score activities (j) superimposed on the  
ATAC-clustered PBMCs (for the ASAP-seq sample) as in (h).

NATuRE BIoTECHNoLoGY | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology


ArticlesNATuRE BIOTECHNOlOGy

Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Additional validation and comparison of modular ASAP-seq workflows. a. Barcoding scheme of TSB tags using the bridge oligo 
for TotalSeqB (BOB). TSB tags contain UMIs (encompassing the antibody barcode), negating the requirement for a UBI on the bridge oligo. b. Pairwise 
comparison of centered log-ratio (CLR) normalized TSA and TSB counts under OMNI lysis conditions (n = 5,236 cells). Counts were collapsed for 
unique molecules using UBIs (TSA panel) or UMIs (TSB panel). c. Comparison of CLR normalised TSB counts under the two lysis conditions. Statistical 
comparisons are two-sided Wilcoxon rank sum test with Bonferroni adjusted p-values (ns = not significant; * padj = 0.0002; ** padj = 2.2×10–16). d. UMAP 
embedding and cluster annotation of the LLL (n = 5,236) and OMNI (n = 4,748) processed cells. Data for the two different samples were processed 
together using cell ranger-atac aggr before dimensionality reduction. e. TSA and TSB CLR counts projected on the LLL embeddings. f. TSA and TSB CLR 
counts projected on the OMNI embeddings.

NATuRE BIoTECHNoLoGY | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology


ArticlesNATuRE BIOTECHNOlOGy

Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Supporting information for ASAP-seq bone marrow analyses. a. Annotation of reduced dimension space with the Doublet 
Enrichment score from ArchR. Arrow indicates the monocytic progenitor population. b. Histogram of scores from panel (a). c. Feature plots for six 
additional antibody tags in the reduced dimension space. d. Correlation heatmap between 25 most variable TF activities and surface markers. e. Percent 
of cells in each ArchR cluster (y axis) mapping to the indicated Seurat cluster (x axis) after label transfer using the protein tags only f. Substitution rate 
(observed over expected) of mgatk-identified heteroplasmic mutations (y axis) in each class of mononucleotide and trinucleotide change resolved  
by the heavy (H) and light (L) strands of the mitochondrial genome. g. Projection of 13711 G > A in single cells; threshold for + was 5% heteroplasmy. 
h. Distribution of observed mtDNA mutations in cells among major cell lineages. i. Association of antibody tag abundance to cell clones determined by 
mtDNA genotypes, highlighting the erythroid marker CD71. j. Developmental trajectory of erythroid differentiation using semi-supervised pseudotime 
analysis. k. Expression of select cell surface markers along the erythroid developmental trajectory highlighted in (j). Rows are min-max normalized.  
l. Expression of chromatin activity scores along the monocytic developmental trajectory for genes encoding proteins shown in Fig. 3h. m. Expression of 
chromatin activity scores along the erythroid developmental trajectory for genes encoding proteins shown in (k).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Supporting information for combined ASAP-seq and CITE-seq readouts. a. Antibody tag complexity per condition and technology. 
Median tag complexity is 1.7-2x higher in CITE-seq compared to ASAP-seq and 1.3-1.6x higher in stimulation compared to control sample. Boxplots: center 
line, median; box limits, first and third quartiles; whiskers, 1.5× interquartile range. The lower panels show the per-cluster mean tag abundance for  
the 50 most variable antibodies and corresponding Pearson correlations. b,c. Cellular distribution of protein tags measured by ASAP-seq (left) and  
CITE-seq (right) for control (top) and stimulated conditions (bottom) for, (b) CD278 (ICOS) and (c) CD71 (TFRC). d. Protein tag measurement importance 
in predicting cell cluster and stimulation from two different Random Forest models. Negative controls (rat epitopes) are shown in red. e-g. ASAP-seq and 
CITE-seq data co-embedding utilizing protein abundances. Cells are highlighted by (e) chromatin/RNA cluster identity, (f) stimulation condition and  
(g) technology assayed. h-j. UMAPs of chromatin accessibility, mRNA expression, and surface protein levels for (h) CD28, (i) CD4, and (j) CD52. 
k. Summary of changes in chromatin accessibility, gene expression and surface protein abundance for 103 expressed genes in B cells following T cell 
stimulation. l,m. UMAPs of chromatin accessibility, mRNA expression, and surface protein levels for genes with differential expression in B cells, including 
(l) CD184 (CXCR4) and (m) CD25 (IL2RA).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Supporting information for DoGMA-seq. a-e. QC metrics of indicated modalities captured by DOGMA-seq applied on the 
stimulated PBMC sample. (a) TSS score, (b) ATAC fragment complexity, (c) % mtDNA content, (d) number of genes/cell and (e) protein tag complexity 
in the two different cell preparations compare similarly to the control PBMC sample in Fig. 5b-f. f. Percent of UMIs detected in the GEX library that map 
to mtRNA is higher in the digitonin-treated cells. g-h. Percent of UMIs mapping to exons is higher in the digitonin-treated (DIG) compared to LLL-treated 
cells (g), but similar when mitochondrial transcripts are excluded (h). i. CD138 tag counts projected on the three modality WNN stimulation clusters.  
j. Gene activity scores, transcript and protein tag counts projected for the indicated markers on the control and stimulated 3WNN clusters. k. Heatmaps 
showing percent overlap between clusters detected by 3WNN compared to 2WNN variations applied on the control PBMC dataset. l. Mean coverage 
along the mtDNA genome in control and stimulated PBMCs. m. Substitution rate (observed over expected) of mgatk-identified heteroplasmic mutations 
(y axis) in each class of mononucleotide and trinucleotide change resolved by the heavy (H) and light (L) strands of the mitochondrial genome for all 
cells in the PBMC-LLL condition. n. Observed (red) and permuted (gray) log2 heteroplasmy changes across the 106 identified variants. Statistical test: 
two-sided Kolmogorov–Smirnov Test. o. 3WNN UMAP embedding of control and stimulated PBMC samples under LLL and DIG processing. Dashed box 
indicates activated T cell clusters. p. Comparison of peak to gene linkage for genes detected in both protein and RNA modalities. Each dot is a peak to gene 
link with the z score representing the magnitude of the association. Boxplots: center line, median; box limits, first and third quartiles; whiskers,  
1.5× interquartile range.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Supporting information for ASAP-seq based decoding of perturbations in primary T cells. a. Schematic for CRISPR perturbation 
experiment in primary human T cells. CD4 + T cells from healthy donors were stimulated for 72 hours, followed by a resting period of four days to enable 
expansion. On Day 7, cells were electroporated with Cas9 RNPs and then rested for an additional 8 days before secondary stimulation. b. Heatmap of cell 
demultiplexing with hashing antibodies, indicating normalized abundance of each hashtag. c. Assessment of the effect of CRISPR perturbations on three 
indicated protein surface markers. d. UMAP embedding overlaid with expression of the eight indicated surface protein markers. e. Allele-specific CRISPR 
editing outcomes for ZAP70 gRNA1 (left) and ZAP70 gRNA2 (right). The wildtype allele is indicated by **. f. Volcano plots showing TF motifs  
with significantly changed chromatin accessibility profiles between NTC cells and the indicated gRNAs (FDR < = 0.05, chromVAR accessibility  
change > = 0.25). g. Correlation of chromVAR median accessibility changes or FDR (bottom right panel) between the indicated gRNAs. h. Genomic tracks 
of TNFRSF18 and HAVCR2 loci with corresponding CLR-normalized protein abundance ridge plots. CLR-normalized protein abundance from the PBMC 
stimulation experiment is indicated by the corresponding boxplots. Differentially accessible regions are highlighted in blue.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Supporting information for intracellular ASAP-seq workflow. a,b. Selected protein markers (a) and corresponding gene activity 
scores (b) superimposed on the ATAC-clustered PBMCs from the intracellular staining experiment (see Fig. 3a). c. Heatmap of cell demultiplexing with 
hashing antibodies, indicating normalized abundance of each hashtag for 24 different perturbation conditions. d. Violin plots showing distribution of CLR 
normalized protein counts for indicated proteins and their associated gRNA. e. Genomic tracks of IFNG and GZMB loci, indicating pseudo-bulk ATAC 
signal tracks across six Louvain clusters with corresponding log-normalized gene activity score violin plots shown to the right. Differentially accessible 
regions are highlighted in blue.
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