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Interrogation of human hematopoiesis at
single-cell and single-variant resolution
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Widespread linkage disequilibrium and incomplete annotation of cell-to-cell state variation represent substantial challenges to
elucidating mechanisms of trait-associated genetic variation. Here we perform genetic fine-mapping for blood cell traits in the UK
Biobank to identify putative causal variants. These variants are enriched in genes encoding proteins in trait-relevant biological
pathways and in accessible chromatin of hematopoietic progenitors. For regulatory variants, we explore patterns of developmental
enhancer activity, predict molecular mechanisms, and identify likely target genes. In several instances, we localize multiple inde-
pendent variants to the same regulatory element or gene. We further observe that variants with pleiotropic effects preferentially
act in common progenitor populations to direct the production of distinct lineages. Finally, we leverage fine-mapped variants in
conjunction with continuous epigenomic annotations to identify trait-cell type enrichments within closely related populations and
in single cells. Our study provides a comprehensive framework for single-variant and single-cell analyses of genetic associations.

highly coordinated to ensure balanced proportions of mature

blood cells'. Despite a sophisticated understanding gained
primarily from model organisms, many aspects of this process
remain poorly understood in humans. At the population level, there
is substantial variation in commonly measured blood cell traits,
such as hemoglobin levels and specific blood cell counts, which can
manifest as diseases at extreme ends of the spectrum?. Identifying
genetic variants that drive these differences in blood cell traits in
human populations may reveal regulatory mechanisms and genes
critical for blood cell production and hematological diseases.

To these ends, genome-wide association studies (GWAS) have
identified thousands of genomic loci linked to complex phenotypes,
including blood cell traits’, but a major challenge has been the iden-
tification of causal genetic variants and relevant cell types underlying
the observed associations®. In particular, linkage disequilibrium (LD)
has confounded the precise identification of functional variants. In
an effort to address these issues, several analytical approaches have
been developed. The first, termed genetic fine-mapping, attempts to
resolve trait-associated loci to likely causal variants by modeling LD
structure and the strength of associations. In practice, a major limita-
tion has been the computational burden imposed when allowing for
multiple causal variants and methods that assume exactly one causal
variant per locus are thus most commonly used™, despite strong evi-
dence that many loci contain multiple independent associations’°.

| | ematopoiesis is a paradigm of cellular differentiation that is

The second suite of approaches focus instead on identifying
functional tissue enrichments. It has been well established that ~80-
90% of associated loci do not tag coding variants and that ~40-80%
of the narrow-sense heritability for many complex traits can be
resolved to genomic regulatory regions'"'”. Given this observation,
tissue-specific measurements of regulatory-element activity are
often overlapped with significant loci (for example, in epigenomic
fine-mapping) or with polygenic signal from millions of variants
(for example, in partitioned heritability) to identify the variants and
cell types most likely to underlie the measured trait or disease'"".
These enrichment methods have identified causal tissues for dis-
eases, including pancreatic islets for diabetes'’ and central nervous
system cells for schizophrenia'’, but are only beginning to be applied
to highly related traits and cell types within single systems such as
the hematopoietic hierarchy.

To gain insights into hematopoietic lineage commitment and
differentiation, we performed GWAS and genetic fine-mapping for
16 blood cell traits on individuals from the UK Biobank (UKB)?
identifying multiple likely causal variants in hundreds of individual
regions. We comprehensively annotated fine-mapped variants and
identified high-confidence molecular mechanisms and putative
target genes at scale. This allowed us not only to gain insights into
patterns of developmental regulation but also to learn about the
pleiotropic regulatory processes underlying blood cell production
and maintenance. Finally, we describe and validate a new method
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(g-chromVAR) to discriminate between closely related cell types
in an effort to identify relevant stages of hematopoiesis that are
affected by these common genetic variants. Applying g-chromVAR
to data from single hematopoietic cells revealed substantial hetero-
geneity of genetic enrichment within classically defined hemato-
poietic progenitor populations. Thus, we demonstrate that using a
well-powered method to identify trait-relevant cell populations pro-
vides a critical step toward broadly deciphering causal mechanisms
underlying phenotypic variation.

Results

Fine-mapping pinpoints hundreds of likely causal variants. We
performed GWAS on ~115,000 individuals from the UKB for 16
blood cell traits representing seven distinct hematopoietic lineages
(erythroid, platelet, lymphocyte, monocyte, and granulocyte (neu-
trophil, eosinophil, and basophil)) (Fig. 1a). Similarly to previous
reports, these traits were highly heritable, with common genetic
variants explaining an average of 15.4% of narrow-sense heritability
(h gz)l"I (Supplementary Fig. 1). Traits from the same lineage typically
had high genetic correlations, such as red blood cell (RBC) count and
hemoglobin (r,=0.89, P=7.1x10), whereas traits from distinct
lineages had low genetic correlations, with some exceptions such
as platelet count and lymphocyte count (r,=0.26, P=3.8X10"'¥)
(Supplementary Fig. 1). This suggests that genetic regulation of
blood production could potentially occur across various stages of
hematopoiesis.

To begin to dissect the nature and stage specificity of these
genetic effects, we performed genetic fine-mapping to identify
high-confidence variants across 2,056 3-Mb regions containing a
genome-wide-significant association. Traditional fine-mapping
approaches assume only one causal variant per locus and either are
agnostic to LD or use small reference panels, which are inaccurate
when scaled to large sample sizes". To overcome these limitations,
we calculated LD directly from the imputed genotype probabilities
(dosages) for individuals in our GWAS, rather than from a hard-
called reference panel (Fig. 1b).

Acrossallcommon variants (minor allele frequency (MAF) > 0.1%,
INFO'*>0.6) in 2,056 regions, our method identified 38,654 variants
with >1% posterior probability (PP) of being causal for a trait asso-
ciation, representing a substantial proportion of the narrow-sense
heritability explained by all common variants (trait average of 24.9%
of the common variant hg2 for PP>0.01) (Supplementary Fig. 1
and Supplementary Table 1). 993 regions (48%) contained at least one
variant with PP > 0.50 (Fig. 1c), providing strong evidence that our
approach was successful in pinpointing causal variants. The posterior
expected number of independent causal variants was greater than two
for 35% of regions and greater than three for 13% of regions (Fig. 1d).
Given their increased complexity, regions with a greater expected
number of causal variants had lower top-configuration posterior
probabilities (Supplementary Fig. 2 and Supplementary Table 2).
The majority of variants (74%) with PP > 0.75had MAF > 5% (Fig. le),
consistent with the known polygenic nature of blood cell traits’.
Fine-mapped variants had potentially diverse mechanisms, rang-
ing from putative regulatory variants in accessible chromatin to
coding variants, including 164 unique missense variants and 6 loss-
of-function variants with PP>0.10 (Fig. 1f, Supplementary Fig. 3,
and Supplementary Table 3).

To validate our approach, we investigated the overlap of fine-
mapped variants (binned by posterior probability) with several
annotations previously shown to be enriched for GWAS signals
(Fig. 1g)'™'2. To generate a null distribution, we locally shifted
annotations within a 3-Mb window, similarly to the method imple-
mented in GoShifter'”. We observed minimal enrichment for
intronic regions and UTRs of genes, but found strong, focal, and
stepwise enrichments across bins with higher posterior probabili-
ties for hematopoietic accessible chromatin, promoters, and coding

regions (odds ratio (OR)=4.2, 2.9, and 8.5 for PP>0.75, respec-
tively) (Fig. 1f)'>'>"". Notably, strong enrichments persisted even
after we excluded all variants with high correlation (*>0.8) to the
sentinel variants at each locus (Supplementary Fig. 3).

Dissecting mechanisms of core gene regulation in hematopoi-
esis. We next sought to delineate the precise mechanisms under-
lying the effects of fine-mapped genetic variants on hematopoietic
traits. For all 140,739 variants with PP >0.001, we combined several
lines of functional and predictive evidence to better understand (i)
the cell populations, (ii) the molecular mechanisms, and (iii) the
target genes involved in blood cell production (Supplementary
Fig. 4). First, we identified fine-mapped (PP>0.10) nonsynony-
mous and loss-of-function coding variants in genes associated with
RBC (77 genes), platelet (59), monocyte (20), lymphocyte (28),
and granulocyte (neutrophil, basophil, and eosinophil; 46) traits
(Supplementary Table 3). Within the set of genes identified from
variants associated with RBC traits, we found both validated GWAS
genes (SH2B3 (ref. '¥) and TRIMS58 (ref. ') (Supplementary Fig. 5)
and several genes linked to diverse Mendelian disorders involv-
ing RBCs (HFE, TMPRSS6, PFKM, PKLR, PIEZO1, SPTA1, ANK1,
RHD, GYPA, and KLF1)*. Genes perturbed by fine-mapped coding
variants were enriched for known and novel trait-relevant biologi-
cal pathways. For example, genes associated with RBC traits were
involved in iron homeostasis, genes for platelet traits were involved
in coagulation and wound healing, genes for lymphocyte traits were
involved in T cell migration and activation, and genes for monocyte
and granulocyte traits were involved in cytokine and inflammatory
responses (Supplementary Fig. 6 and Supplementary Table 3). Of
note, we identified several pathways corresponding to cholesterol
and lipid regulation that were enriched in genes linked to RBC
traits (Supplementary Fig. 6), suggesting a connection between lipid
metabolism and RBCs, which are major stores of cholesterol*.

To investigate the exact stages of hematopoietic differentiation
during which variants could regulate transcription, we overlapped
fine-mapped variants (PP >0.10) with chromatin accessibility pro-
files (ATAC-seq) for 18 hematopoietic progenitor, precursor, and
differentiated cell populations primarily sorted from the bone mar-
row or blood of healthy donors (Fig. 1a, Supplementary Fig. 7, and
Supplementary Table 4). Across traits representing the five major
blood cell lineages, we used k-means clustering to categorize the
developmental timing of accessible chromatin peaks containing
fine-mapped variants (Fig. 2a,b and Supplementary Fig. 8). For
example, across RBC traits, we identified 80 fine-mapped regula-
tory variants, of which 26% (21/80) were restricted to erythroid pro-
genitors, 18% (14/80) were restricted to megakaryocyte—erythroid
progenitors (MEPs) and erythroid progenitors, and 29% (23/80)
could regulate transcription across the entire erythroid lineage from
hematopoietic stem cells (HSCs) to erythroid progenitors, whereas
14% (11/80) could only act in other hematopoietic lineages (Fig. 2a).
In some cases, we identified small clusters of variants that fol-
lowed slightly different regulatory programs, such as variants that
could only regulate transcription in upstream multipotent pro-
genitors and variants associated with lymphocyte count that could
regulate transcription in T cell, but not B cell, subsets (Fig. 2a,b
and Supplementary Fig. 8).

Next, we investigated the molecular mechanisms underlying
fine-mapped regulatory variants. To nominate a high-confidence
molecular mechanism, we required that a variant (i) disrupt one of
426 motifs corresponding to known binding preferences for human
transcription factors® and (ii) show occupancy by the correspond-
ing transcription factor in a relevant primary hematopoietic tissue
or hematopoietic cell line, on the basis of 2,115 uniformly processed
ChIP-seq profiles®. In total, we identified one or more such mecha-
nisms for 145 distinct fine-mapped noncoding variants (Fig. 2c).
Specifically, we identified 13 RBC, 28 platelet, 8 monocyte, 11 lym-
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GWAS on UKB (~115,000) for 16 blood cell traits
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Fig. 1| Overview of hematopoiesis, UKB GWAS, and fine-mapping. a, Schematic of the human hematopoietic hierarchy showing the primary cell types
analyzed in this work. Colors used in this schematic are consistent throughout all figures; mono, monocyte; gran, granulocyte; ery, erythroid; mega,
megakaryocyte; CD4, CD4* T cell; CD8, CD8* T cell; B, B cell; NK, natural killer cell; mDC, myeloid dendritic cell; pDC, plasmacytoid dendritic cell; MPP,
multipotent progenitor; LMPP, lymphoid-primed multipotent progenitor; CMP, common myeloid progenitor; CLP, common lymphoid progenitor; GMP,
granulocyte-macrophage progenitor; MEP, megakaryocyte-erythroid progenitor. The 16 blood traits that were genetically fine-mapped are shown below
the hierarchy; WBC, white blood cell; MPV, mean platelet volume; MCV, mean corpuscular volume; MCHC, mean corpuscular hemoglobin concentration;
MCH, mean corpuscular hemoglobin. b, Schematic of the UKB GWAS and fine-mapping approach. Briefly, blood traits for ~115,000 individuals were
fine-mapped, allowing for multiple causal variants and using imputed genotype dosages as the reference for LD. ¢, Number of fine-mapped regions for
each trait; the highest posterior probability of a variant being causal is indicated. d, Breakdown of the number of causal variants (min=1, max=5) for all
regions in each trait. e, Empirical distribution of the MAF of variants in each posterior probability bin. f, Proportion of fine-mapped variants within intronic,
promoter, coding, UTR, and intergenic regions. g, Local-shifting enrichments of fine-mapped variants across all traits for varying posterior probability bins.

AC, accessible chromatin.
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Fig. 2 | Mechanisms of core gene regulation in blood production. a,b, Heat maps depicting RBC-trait-associated variants (PP > 0.10) across the erythroid
lineage (a) and lymphocyte-count-associated variants (PP > 0.10) across the lymphoid lineage (b), with clustering by chromatin accessibility. Each row
represents a fine-mapped variant, each column denotes a cell type within the relevant lineage, and color corresponds to relative chromatin accessibility
along the lineage at each variant (blue, least accessible chromatin; red, most accessible chromatin). Putative target genes (predicted by ATAC-RNA
correlation and/or PCHi-C) and disrupted transcription factors (predicted by ChlIP-seq occupancy and motif disruption) are indicated to the right.

¢, Transcription factor motifs disrupted in lineage-specific hematopoietic traits. Each row represents a set of traits where variants disrupt specified
transcription factor motifs and are occupied by the respective transcription factor in hematopoietic cells. The unique margin sums across each lineage are
shown in the bar plot for each transcription factor. The expected number of variants with evidence of ChIP-seq plus motif disruption across all posterior
probabilities was estimated by using 100,000 permutations and is shown as a single point. PLT, platelet; LYMPH, lymphocyte; MONO, monocyte; GRAN,
granulocyte. d, Examples of molecular mechanisms identified from the analysis in ¢, including putative causal variants that disrupt binding in cis of
transcription factors known to be involved in regulating hematopoiesis for various blood cell traits: rs10758656 and rs66480687 are associated with RBC
traits; rs75522380 and rs74340846 are associated with platelet traits; rs4970966 is associated with monocyte count; and rs79716587 is associated with
lymphocyte count. In the ATAC-seq plots, black represents accessibility throughout hematopoiesis whereas other stacked colors represent accessibility for
the cell types shown in Fig. 3d. Cons., conservation. e, Examples of putative target genes identified from the analysis in a and b: rs11642657 and rs12151289
are associated with monocyte count; rs73660574 is associated with RBC traits; rs553535973 is associated with lymphocyte count; and rs114694170 is
associated with platelet traits. Colors for accessible chromatin are the same as in d. In PCHi-C, s indicates the CHiCAGO interaction score from ref. *,
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Fig. 3 | Characterization and validation of the CCND3 and AK3 regions with multiple causal variants. a,b, Regional association plots (n=116,667 individuals;
BOLT-LMM P values) for RBC count in the CCND3 locus from the initial GWAS (a) and after conditioning on the sentinel variant, rs9349205 (b). ¢,d, Fine-
mapping identifies two putative causal variants (rs9349205, PP=0.94; rs112233623, PP=0.99) located 161 bp apart (c), both of which lie within the same
erythroid-specific accessible chromatin (d). e, Luciferase reporter assays (n = 9 biological replicates) for four haplotypes (left) corroborate independent additive
effects for rs9349205 (red; two-sided Wald test P=1.78 x 10-3) and rs112233623 (blue; two-sided Wald test P=2.86x107°) on RBC count (right). a.u., arbitrary
units. f,g, Regional association plots (n=116,666 individuals, BOLT-LMM P values) for platelet count in the AK3 locus from the initial GWAS (f) and after
conditioning on the sentinel variant, rs12005199 (g). h,i, Fine-mapping identifies two putative causal variants (rs12005199, PP=0.99; rs409950, PP=0.99) 123
bp apart (h), both located within a strong megakaryocyte-specific accessible chromatin region (i). j, Luciferase reporter assays (n=9 biological replicates) for
four haplotypes (left) corroborate independent additive effects for rs12005199 (red; two-sided Wald test, P=5.19 x10-*) and rs409950 (blue; two-sided Wald
test, P=3.57x107°) on platelet count (right). In e and j, mean and standard error are shown for both phenotype and regulatory activity.
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phocyte,and 18 granulocyte high-confidence molecular mechanisms
for variants also in accessible chromatin in primary hematopoietic
tissue (Fig. 2a,b, Supplementary Fig. 8, and Supplementary Table 5).
These variants most commonly disrupted the binding sites of key
transcriptional regulators of hematopoietic lineage commitment
and differentiation (false-discovery rate (FDR) <10% for 33 tran-
scription factors). For example, we observed seven PU.1 (SPI1)**,
six ERG*%, four FLI1 (refs. **%°), three IRF4 (ref. *°), and three
RUNXI (refs. *»*?) binding-site-disrupting variants associated with
platelet traits (Fig. 2c,d), in addition to many other compelling
lineage-specific regulatory mechanisms for experimental follow-up
(Supplementary Fig. 8 and Supplementary Note).

Finally, to identify high-confidence target genes for fine-mapped
regulatory variants, we built hematopoietic-specific enhancer—pro-
moter maps by using (i) measurements of physical DNA interac-
tions in 15 primary hematopoietic cell populations from promoter
capture Hi-C (PCHi-C)* and (ii) the correlation between chromatin
accessibility and expression of genes in cis across 16 primary hema-
topoietic populations™*. Altogether, we identified one or more
experimentally supported target genes for 415 variant-trait associa-
tions, providing testable biological hypotheses for 79% of the fine-
mapped regulatory variants (Fig. 2a,b, Supplementary Figs. 5 and 8,
and Supplementary Tables 6 and 7). Interestingly, a number of vari-
ants were predicted to alter the transcription of genes encoding hema-
topoietic transcription factors (Fig. 2d,e and Supplementary Fig. 8).
For example, IRF8 and CEBPA, which encode two essential tran-
scription factors involved in monocyte differentiation®>*’, were tar-
gets of fine-mapped variants associated with monocyte count that
fell within accessible chromatin in monocyte precursors (Fig. 2e).
Similarly, we determined that GFIIB, KLF2, and MEF2C were
targets of fine-mapped variants in progenitor-specific accessible
chromatin associated with mean reticulocyte volume, lymphocyte
count, and platelet count, respectively (Fig. 2e). Overall, this func-
tional analysis will likely facilitate experimental investigation into
how common genetic variants regulate hematopoietic lineage com-
mitment and differentiation.

Regions with multiple causal variants. We next conducted a closer
examination of the 785 trait-associated regions with multiple inde-
pendent causal signals. Among proximal pairs of variants in which
both variants had PP > 0.50, the majority were >10 kb apart (76%),
although the variants in seven pairs were within fewer than 100 bp
of each other (Supplementary Fig. 9 and Supplementary Table 8).
Across all pairs, 42% of the variants were of the same class (for
example, coding-coding variants), and pairs of variants in acces-
sible chromatin but in different regulatory regions within 1 Mb of
each other were typically lineage specific (Supplementary Fig. 9).
Examples of coding-coding pairs included hemoglobin-associated
rs1800730 and rs1799945 (PP > 0.66; 4 bp apart) in HFE, the clas-
sic gene mutated in hereditary hemochromatosis; white blood cell
(WBC)-count-associated rs146125856 and rs148783236 (PP > 0.98;
24 bp apart) in USP8, which encodes an immune-specific ubiquitin
ligase and is mutated in Cushing’s disease***’; and mean platelet vol-
ume (MPV)-associated rs41303899 and rs415064 (PP > 0.76; 835 bp
apart) in TUBBI, which encodes a p-tubulin protein important for
proplatelet formation that is mutated in monogenic forms of mac-
rothrombocytopenia®.

Although there were several other interesting pairs of variants
in accessible chromatin (Supplementary Note and Supplementary
Fig. 10), we specifically investigated the association with RBC count
at the CCND3 locus, in which we previously identified a causal
variant and its target gene*. At this locus, our current approach
correctly identified the known causal variant (rs9349205) as the
primary association, as well as ~4 additional independent signals,
including a secondary imputed variant (rs112233623) associ-
ated with decreased RBC count (Fig. 3a—c). Stepwise conditional

analysis further validated these findings (Fig. 3b). Notably, these
variants were missed by fine-mapping if we instead used LD esti-
mated from either the UK10K whole-genome sequencing (WGS)
reference panel or hard-called variants from the UKB population
(Supplementary Fig. 11), highlighting the importance of calculating
LD by using imputed genotype dosages from the GWAS popula-
tion. Remarkably, rs112233623 is only 161 bp from rs9349205, and
both fell within erythroid-specific accessible chromatin (Fig. 3d).
Luciferase reporter assays showed that each variant affected enhancer
activity independently with the minor alleles acting in oppos-
ing directions, consistent with the genetic directionality (Fig. 3e).
At a separate locus associated with platelet traits, we similarly
observed a large number of independent signals (approximately
eight), which allowed us to identify a variant pair (rs49950 and
rs12005199; PP>0.99; 123 bp apart) within a single accessible
chromatin region ~20 kb upstream of AK3, a gene whose zebraf-
ish homolog is essential for platelet (thrombocyte) formation
(Fig. 3f-i)*. Notably, we again observed that each variant signifi-
cantly affected enhancer activity additively and in concordance with
the population phenotypes (Fig. 3j).

Mechanisms of pleiotropic variants across distinct blood cell lin-
eages. We next sought to examine the effects of variants associated
with two or more of the seven distinct blood cell types for which
phenotypes were available in the UKB. We hypothesized that these
pleiotropic variants could either (i) ‘tune’ overall blood production
by simultaneously increasing or decreasing the levels of terminal
blood cells across multiple lineages or (ii) ‘switch’ blood cell pro-
duction such that one lineage would be favored at the expense of
others (Fig. 4a).

We restricted our analyses to quantified blood cell counts for
interpretability and identified 172 pleiotropic variants that colocal-
ized* (PP>0.10) to two or more traits (Fig. 4b—d, Supplementary
Fig. 12, and Supplementary Table 9). Surprisingly, 91% (156/172)
of these variants exhibited a tuning mechanism, modifying two
or more lineages in the same direction, whereas the remaining
9% (16/172) favored one lineage at the expense of other lineages
(P=5.08x107*, binomial test). Regardless of direction of effect,
88% of all pleiotropic variants were noncoding, and those in
regions of accessible chromatin had 60% more ATAC-seq reads in
progenitors than in terminal cell types (mean of 4.01 versus 2.44
counts per million; P=0.025, Student’s ¢ test), consistent with the
hypothesis that many of these variants act in common progenitor
cell populations*-*.

One example of a variant exhibiting a switch mechanism is
rs78744187 (PP =0.99 and 0.99), which increased RBC count while
concomitantly decreasing basophil count (Fig. 4c). rs78744187
is located in an enhancer specific for common myeloid progeni-
tors (CMPs), a heterogeneous population containing progenitors
for both basophils and RBCs, approximately 36 kb downstream of
CEBPA, which encodes a key myeloid transcription factor®. We
previously reported the association between rs78744187 and baso-
phil count, but not RBC count, and showed that this variant was a
switch for production of the closely related basophil and mast cell
lineages®. A second switch variant, rs218265 (PP=0.99 and 0.64),
located within a gene desert 1.15 Mb upstream of KIT, increased
neutrophil count but decreased RBC count. KIT encodes the recep-
tor protein for stem cell factor, a growth-stimulating cytokine
involved in hematopoietic progenitor cell proliferation®. rs218265
falls within a region of accessible chromatin that is exclusively open
in multipotent and heterogeneous populations (Fig. 4d), consistent
with a role for this enhancer variant in regulating KIT expression in
the common progenitors of neutrophils and RBCs. Taken together,
our results suggest that tuning the dosage of key regulatory genes
in upstream progenitors may switch the production of one lineage
in favor of another during the early stages of lineage commitment.
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Fig. 4 | Dissecting the mechanisms of pleiotropic variants across multiple

blood cell lineages. a, Schematic illustrating fine-mapped variants acting in

multipotent or heterogeneous progenitors on distinct hematopoietic lineages, by either tuning lineages in the same direction or switching the regulation
in opposite directions. b, Heat map depicting 172 fine-mapped variants (PP > 0.10) with pleiotropic effects on cell counts in two or more hematopoietic

lineages. Effects on eosinophil, neutrophil, and basophil counts are visualize

d together as a single granulocyte lineage. Genomic annotation is indicated

below each variant. ¢, Pleiotropic variant rs78744187, located downstream of CEBPA, has high chromatin accessibility in CMPs and MEPs (top) and

demonstrates a switch mechanism by downregulating basophil count while
gene encoding stem cell factor receptor, has high chromatin accessibility in

upregulating RBC count (bottom). d, rs218265, located upstream of the KIT
several early progenitors (HSCs, MPPs, CMPs, and MEPs) and demonstrates

a switch mechanism by upregulating neutrophil and WBC count while downregulating RBC count. e, rs17758695, located within an intron of the
antiapoptotic factor BCL2, has high chromatin accessibility in several early progenitors (HSCs, MPPs, CMPs, and MEPs) and exhibits a tuning mechanism,

simultaneously downregulating eosinophil, monocyte, and RBC counts.

As an example of a pleiotropic variant exhibiting the predomi-
nant tuning mechanism, we found that rs17758695 (PP =0.99, 0.99,
and 0.99) was associated with decreases in eosinophil, monocyte,
and RBC count (Fig. 4¢). This variant is located within a progen-
itor-specific region of accessible chromatin in the intron of BCL2,
which encodes an antiapoptotic protein known to regulate hema-
topoietic differentiation®. This is consistent with the idea that
regulating a general cell death protein such as BCL2 in a common
multipotent progenitor would tune the production of multiple cell
types, in contrast to the switch variants proximal to key regula-
tors of hematopoietic differentiation. An additional tuning variant
is the missense variant rs12459419 (PP =0.30, 0.28, and 0.11) in
the CD33 gene, which was associated with decreases in eosinophil,
monocyte, and platelet count. CD33 is broadly expressed in hema-
topoietic progenitors and encodes a surface marker of myeloid dif-
ferentiation® (Supplementary Fig. 12). In summary, our analyses
support a prominent role for pleiotropy in hematopoietic differen-
tiation, whereby individual variants can act in upstream progeni-
tors to simultaneously tune or switch production and maintenance
of multiple lineages.

g-chromVAR, a new method to measure fine-mapped GWAS
trait enrichment among closely related tissues. We next shifted
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our focus in the reciprocal direction—by using fine-mapping
to determine the exact stages of human hematopoiesis at which
the regulatory genetic variation underlying each blood cell
trait is most likely acting. Although methods'""” have recently
been developed to calculate enrichment of genetic variation for
genomic annotations, a method that takes into account both
(i) the strength and specificity of the genomic annotation and
(ii) the probability of variant causality, while accounting for LD
structure, is needed to resolve associations within the closely
related, stepwise hierarchies that define hematopoiesis. To this
end, we developed a new approach called genetic-chromVAR
(g-chromVAR), a generalization of the recently described
chromVAR method™, to measure the enrichment of regulatory
variants in each cell state by using fine-mapped variant poste-
rior probabilities and quantitative measurements of regulatory
activity (Fig. 5a; details in Supplementary Note and Methods).
We show that g-chromVAR is generally robust to variant pos-
terior probability thresholds and numbers of background peaks
(Supplementary Fig. 13), captures true enrichments in a simu-
lated setting (Supplementary Fig. 14), is robust to the choice of
fine-mapping method (Supplementary Table 10), and can identify
novel enrichments in large epigenomic datasets (Supplementary
Table 11; details in Supplementary Note).
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to 16 blood cell traits for 18 hematopoietic cell types. b, Quantile-quantile representation of the P values from each method. ¢, Overlap between methods
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test was used to evaluate the relative enrichment of lineage-specific trait-cell type pairs (true positives). e-h, Enrichments for four representative traits
obtained by using g-chromVAR: mean corpuscular volume (e), mean platelet volume (f), monocyte count (g), and lymphocyte count (h).

To validate g-chromVAR in a realistic setting, we used it along
with seven other methods to estimate the enrichment of each of the
16 blood cell traits within the accessible chromatin of 18 hemato-
poietic progenitor and terminal cell populations (Figs. 1a and 5c,
Supplementary Figs. 15 and 16, and Supplementary Table 4)***. To
compare g-chromVAR’s performance to that of other state-of-the-
art enrichment tools, we leveraged knowledge of the hematopoietic
system and devised a lineage specificity test (Supplementary Note),
which is a nonparametric rank-sum test that compares the relative
ranking of lineage-specific and non-lineage-specific enrichments

for each of the compared methodologies., We found that g-chrom-
VAR was the most specific of all the tested methods while still
retaining sufficient power to identify 22 trait—cell type associations
(Fig. 5d and Supplementary Figs. 13a and 16).

Having validated our approach, we investigated cell type
enrichments for each of the 16 traits. We found that the most
lineage-restricted or terminal populations were typically most
strongly enriched for a corresponding trait association (Fig.
5e-h). For example, RBC count was most strongly enriched in
erythroid precursors (Fig. 5¢), and lymphocyte count was most
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Fig. 6 | Application of g-chromVAR to single-cell chromatin accessibility data. a, 2,034 hematopoietic cells projected onto a 3D principal-component
embedding. Single cells colored by g-chromVAR enrichment score for mean reticulocyte volume show specific regulatory enrichment in the MEP population.

b, Validation of g-chromVAR enrichments using synthetic bulk populations obtained from sums of single cells (n=2,034 cells). Aggregated single-cell
g-chromVAR z scores across all trait-cell type pairs (individual points) strongly correlate (Pearson’s R=0.84) with bulk population z scores. ¢, Inferred
pseudotime trajectories of three hematopoietic lineages from scATAC-seq data. d, Pseudotime trends (mean and 95% confidence interval) of g-chromVAR
scores for platelet count across all single cells (n=2,034 cells) corroborate the regulatory dynamics of megakaryocyte-erythroid differentiation. e, Rank-order
plot highlighting the trait-cell type pairs with the greatest variance over a y? distribution. f, k-medoids partitioning of ATAC-seq counts in CMP cells (n=502
cells) identified two subpopulations: one that was enriched for monocyte genetic variants and one that was enriched for megakaryocyte-erythroid variants
(RBC count, FDR=1.28 x10~% mean platelet volume, FDR=2.36 x10~%; platelet count, FDR=1.40 X 10~°; monocyte count, FDR=2.21x107?). chromVAR scores
for master transcription factors (TFs) for each blood cell type support biological hypotheses for the genetic enrichments (GATA1, FDR=1.76 x 1082, KLF1,
FDR=4.33x1073; CEBPA, FDR=2.58 x107; IRF8, FDR=4.65x10""). Two-tailed t tests were used for each comparison. Box plots represent the median and
interquartile range; whiskers extend 1.5x the interquartile range from the hinges of the box plots. g, Similar k-medoids partitioning of MEP cells (n=138 cells)
identified two subpopulations with differential enrichments for megakaryocyte- and erythroid-associated genetic variants (RBC count, FDR=0.155; hematocrit,
FDR=3.98x10% platelet count, FDR=7.65x1072), along with consistent differences in chromVAR transcription factor deviation scores for master transcription
factors of each blood cell type (GATA1, FDR=2.18 x 10~% KLF1, FDR=4.02 x 105, MEF2C, FDR=2.52 x1073).

strongly enriched in CD4* and CD8* T cells (Fig. 5h). In sev-
eral instances, we observed significant enrichments for traits in
earlier progenitor cells within each lineage, including enrich-
ment for platelet traits in CMPs and enrichment for monocyte
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traits in a specific subpopulation of granulocyte-macrophage
progenitors (GMPs) (Supplementary Fig. 13a). We sought to
investigate these enrichments in progenitor cells further at the
single-cell level.
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GWAS trait enrichment in single-cell chromatin accessibility
data. Although the strongest g-chromVAR enrichments for blood
traits were in the most lineage-restricted precursors, we reasoned
that investigating progenitor populations that had robust enrich-
ment signals, such as CMPs and MEPs, could inform principles
of the genetic regulation of terminal blood cell production®—.
To this end, we scored 2,034 single bone marrow-derived hema-
topoietic stem and progenitor cells* for GWAS enrichment by
using g-chromVAR (Fig. 6a). Composite single-cell and bulk cell
type enrichments were highly correlated (R=0.84) (Fig. 6b), and
enrichments along inferred pseudotime trajectories of cellular dif-
ferentiation mirrored our observations from bulk data, albeit with
finer granularity (Fig. 6¢,d). These results suggest that g-chromVAR
is able to recover known biology from sparse single-cell ATAC-seq
(scATAC-seq) profiles.

To explore potential heterogeneity within each of the 11 hema-
topoietic progenitor populations, we estimated the variation in
regulatory genetic enrichments for each trait within the popula-
tions. We found that classically defined CMP (n=502 cells) and
MEP (n=138 cells) populations exhibited significant heteroge-
neity in g-chromVAR enrichments for both erythroid and mega-
karyocyte traits (Fig. 6e). We thus hypothesized that the CMP
population could be subdivided into megakaryocyte-erythro-
cyte-primed and monocyte-primed subtypes, whereas the MEP
population could be further subdivided into erythrocyte-primed
and megakaryocyte-primed subtypes. To test this hypothesis, we
performed unsupervised clustering on chromatin accessibility
profiles for the CMP and MEP populations (Supplementary Fig.
17) and found that the (GWAS-naive) subpopulations were indeed
differentially enriched for the specific GWAS traits. In agreement
with these genetic enrichments, we observed differential chroma-
tin accessibility of motifs for lineage-specific master transcription
factors between the subpopulations that corresponded to the trait
enrichments, such as increased chromatin accessibility for GATA1
motifs within the clusters enriched for erythroid traits (Fig. 6f,g
and Supplementary Table 12). Additional studies are needed to
determine whether these differences are due to distinct lineage-
biased subpopulations or whether they reflect gradations along a
common axis of differentiation. Regardless, our findings demon-
strate that genetic variation acts heterogeneously within classically
defined progenitor populations.

Discussion

Two outstanding challenges in the post-GWAS era are (i) the precise
identification of causal variants within associated loci and (ii) deter-
mination of the exact mechanisms by which these variants result in
the observed phenotypes. To address the first point, we used robust
genetic fine-mapping to identify hundreds of putative causal vari-
ants for 16 blood cell traits, allowing for up to five causal variants
in each locus. At PP>0.10, we identified 240 fine-mapped coding
variants as well as 647 regulatory variants in accessible chromatin
in at least one of 18 primary hematopoietic populations. Several
compelling anecdotes, including a number of instances in which
the activity of a single regulatory element is modulated by multiple
functional variants, highlight the advantages of allowing for mul-
tiple causal variants when fine-mapping.

To address the second point, we compiled and derived functional
annotations to nominate regulatory mechanisms and identify puta-
tive target genes. Overall, our comprehensive approach identified
a high-confidence regulatory mechanism for 145 variants and an
experimentally supported target gene for 79% of variants in acces-
sible chromatin for distinct lineages. Our investigations into fine-
mapped pleiotropic variants revealed that ~90% of these variants
act to tune total hematopoietic production, whereas the remaining
~10% favor production of one lineage at the expense of another
(switch variants). To further improve identification of causal cell

types, we developed a new enrichment method (g-chromVAR) that
can discriminate between closely related cell types and applied it
to directly probe the regulatory dynamics of hematopoiesis within
classically defined progenitor populations in bulk and at the single-
cell level. Our ‘top loci’ method is complementary to enrichment
methods that investigate polygenic signals, such as S-LDSC.

Overall, our integrated approach is designed to sequentially
identify causal genetic variants, their molecular mechanisms, their
target genes, and the cell types in which they act. We expect that
better-powered fine-mapping studies, more numerous and higher-
quality bulk and single-cell epigenomic datasets, and improved
computational tools will extend the inferences discussed herein.
Altogether, our study represents a paradigm for the comprehensive
mapping of variants to function, which can be applied broadly to
gain insights into the specific mechanisms of variants associated
with a range of human traits and diseases.

URLSs. UCSC Genome Browser visualization hub for all bulk ATAC-
seq data, https://s3.amazonaws.com/atachematopoesis/hub.txt; web
app to visualize putative causal variants and corresponding annota-
tions, http://molpath.shinyapps.io/ShinyHeme; functional genomic
annotations, https://github.com/caleblareau/singlecell_bloodtraits/
tree/master/data/annotations.
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summaries, source data, statements of data availability and asso-
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